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Abstract

In this thesis we will prove, in infinite dimensional spaces, an existence result
concerning the existence of solutions for a semilinear differential inclusions with
fractional order. Then we establish the existence of a continuous selection for the
multifunction which represents the solution sets. We consider the case when there is
a delay.

Our technique depends on using an appropriate fixed point theorem and a known
result ensures the existence of continuous selections.

The obtained results extend a recent published result, concerning the existence
of solutions for a semilinear differential inclusions with fractional order, from finite
dimensional spaces to infinite dimensional spaces. Moreover, our technique allows to
study the existence of continuous selections for some semilinear differential inclusions

with fractional order in infinite dimensional spaces.
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0.1 General Introduction.

Differential equations and inclusions of fractional order have recently proved
to be valuable tools in the modeling of many phenomena in various fields of science
and engineering. Indeed we can find numerous applications in viscoelasticity, electro-
chemistry, electromagnetism, and so forth. For details, including some applications,
see [27,36).

Elsayed And Ibrahim [21] initiated the existence of solutions for fractional differ-
ential inclusions. Many authors have been studied in recent papers the existence of
solutions for differential inclusions or semilinear differential inclusions of fractional
order, see for example [1,2,8,25,26,30,31,35,37,42,43].

Moreover, Breasan [11] discussed the existence of continuous selections of solution
sets of differential inclusions of order one, Cernea [14] proved in finite dimensional,
the existence of continuous selections of solutions sets of nonlinear integro-differential
inclusions of fractional order «v € (1, 2], Cernea [15] studied, in finite dimensional, the
existence of continuous selections of solutions sets of fractional differential inclusions
of fractional order «v € (1,2) involving Caputo’s fractional derivative, Colombo [17]
proved the existence of continuous selections of solution sets of Lipschitzean differ-
ential inclusions of order one, and Staicu [40] discussed the existence of continuous
selections of solution sets to evolution equations. In addition, AL-Shary [23] proved
the existence of continuous selections of solution sets to the following semilinear

differential inclusion

(Qu) 2'(t) € Ax(t) + F(t,7(t)x), a.e. te J,
:Ii(t) = (2‘) , t e [_,_’ 0] ‘

where A is the infinitesimal generator of a Cy-semigroup of bounded linear operator

{Tl) =t =0} in B.
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Motivated by these works, in this thesis we have found, in infinite dimensional,
the conditions that ensure the existence of continuous selections of solution sets for
semilinear differential inclusion of fractional order and when the linear part is the
infinitesimal generator of a semigroup of operators. To achieve this goal we extended,
at first, a new result due to Ibrahim and Almoulhim [30] from finite dimensional to
infinite dimension spaces. For more explanation, let ¢ € (0, 1], r, b be two positive
real numbers, J = [0,b], E be a real separable Banach space, C, = C ([—r,0], E) be
the Banach space of E-valued continuous functions on [—r, 0] with the uniform norm
||| = sup{||=(t)]., t € [, 00},Cs = C([—r,b],E), F:JxC, — Pyg(E) ( the
family of nonempty convex compact subsets of £ ) and A : D(A) C E — F be the
infinitesimal generator of a Cy-semigroup of bounded linear operator {7'(t) : t > 0}

in E. Consider the following fractional functional semilinear differential inclusion:

(P) Diz(t) € Az(t) + F(t,7(t)x), a.e.te€ J,
x(t) =4 (), te -0,

b

where 9 is a given element in C, = C ([—r,0], E).

Let Sy = {zy : z, a solution for (P,)}. Note that Sy C Cp.

Our goals in this thesis are:

(1) Find the appropriate condition that ensure that the set S, is nonempty.

(2) Find the appropriate condition that guarantee the existence of continuous
selections for the multivalued function ¢ — S, , that is, there is a continuous
function u : C, — C} such that u(y) € S,.

The thesis is divided into two chapters. In the first chapter we present some
fundamental concepts and facts related to set-valued functions, fractional calculus,

semigroups and differential inclusions. In the second chapter we present our results.
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Introduction.

The aim of this chapter is to present some fundamental concepts and facts related
to set-valued functions, fractional calculus and differential inclusions.

More precisely this chapter is organized as follows. In section 1, we will give some
useful properties about Hausdorff metric topology. In section 2, we present the main
notions and results concerning set-valued maps, their continuity, measurability and
integrability. In section 3, we give the definitions and properties of fractional integral
and fractional derivative in Riemann-Liouville and Caputo sense. In section 4, some
facts about semigroups of linear operators are given. In sections 5 and 6, we present
facts about differential inclusions and fractional functional differential inclusions.
Finally, in section 7 we will give some important facts. Throughout this thesis we

will use the following notations,
e P(E)=2F={A: AC E},
e Py(E)={AC E: Ais nonempty and closed of E},
e P(E) ={AC E: A is nonempty and compact of E'},
e P,(E)={AC E: A is nonempty, convex and compact of E'},
e Puw(E)={AC E: A isnonempty, closed and convex of E},
e Pp(F)={AC E: A is nonempty and bounded of E},
e Py (E)={AC E: A is nonempty, convex and bounded of E},

e Pyuc.(E)={AC E: Ais nonempty, bounded, closed and convex of E}.

1.1 Hausdorff Metric Topology.

The purpose of this section is to give material related to study the Hausdorff distance.
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Definition 1.1.1 (Definition 1.1.1 ,[13]). Let (X,d) be a metric space. If A , B

€ 2%, than we define
(a) e(A, B) =sup{d(a,B):a€ A} (the excess of A over B),
(b) H(A,B) =max{e(A, B),e(B,A)} (the Hausdorff distance between A and B).
Elementary properties:([13]). Let A, B € 2¥:
1. e(A,¢)=00 if A # ¢ and e(¢, B) = 0 (by convention),
2. ¢(A,B)=0s ACTH,
B H{A.B]j=0aA=15,

4. H(A,B) < H(A,C) + H(C, B), where C C X.

So by assertion 3, we see that the Hausdorff distance,
H i PL.[(‘Y) X Pd(/\’) — [O ’)C)

becomes a metric space. The topology induced by the Hausdorff distance is called

the Hausdorff topology denotes by 7.

Definition 1.1.2 (Definition 1.1.11,[28]). Let X be a normed space, X* its (topo-
logical) dual and A € 2%\ {¢}. The support function o (-, A) of A is a function from
X* into R = RU{oo} defined by o (z*, A) = sup{(z*,a) : a € A}, where (-,-) denotes
the duality brackets for the pair (X, X™).

Theorem 1.1.1 (Th II2, Th 113, Th 115, ThII8, [13]).

1. If {A,, A}, . € Pu(X) and A,, — A in the Hausdorff metric, then
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2. If (X,d) is a complete metric space, so is (Pu(X), H),
3. If (X,d) is a complete metric space, then so is (Pi(X), H),
4. If X is a normed space, X* its (topological) dual and A, B € Py . . (X), then

H(A, B) = sup{|é*(z*, A) — 6*(z*, B)| : ||I=*| < 1}.

5. If (X,d ) is a metric space and A, B € 2% \ {¢}, then

H(A, B) =sup{|d(z,A) —d(z,B)|: z € X}.

Proof.

l.Lete B= N U A,,. Let ¢ >0, n € Nand x € A. There exists m > n such

n>lm>n

that H(A,,, A) < ¢, hence , d(z, A,,) < ¢, and there exists a point z,, € A,

such that d(z, z,,) < e. Therefore: x € Lﬁ A, Ym,n € N, that proves A C B.

m-=n

Let z € B and let us prove that A, — AU {z} ( that will proves A C
B ). From A, — A follows: e(A,, AU {z}) — 0, moreover we shall prove
that e(AU {z}, A,) = max{e(A, A,),d(z, A,)} — 0. It is sufficient to prove
d(x,A,) — 0. Let p such that m,n > p = H(A,,A,,) < e. From z € B
follows that there exists m > p such that: d(z, A,,) < e. Hence if n > p,

d(z, An) < d(@, Am) + H(Am, A,) < 2.

2. Let {A,}.>1 be a Cauchy sequence in (Py(X),H). Let A= N U A,,. We

n=>lm>n

will now show that A € P,(X) and A, — A. First it is clear that A being the
intersection of closed sets is closed, possibly empty. Let £ > 0. Then for every

k > 0, we can fined N, > 1 such that H(A,, A,,) < sigr for all n,m > N;.

Pick ny > N, and zy € A,,. Then choose n, > max[ng, Ni| and z; € A,

with d(xo, ;) < § (this is possible since d(xo, An;) < H(Ang, An,) < 5). Then

ngs

if {ni}r>0 is a strictly increasing sequence with n; > Ni, inductively we can
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generate a sequence {zy}r>0 C X such that x, € A,, and d(zk, Tr+1) < FhrTe
So {x }r>0 is a Cauchy sequence in X and since X is complete, we have that
xr — x € X. Because {n;}r>o is strictly increasing, given n > 1, we can find

kn, > 1 such that ng, > n. Hence x, € U A,, for k > k, andsoxr € U A,

il m>n m>n

for all n > 1. Thus = € A, which shows that A € P.,(X). In addition, we have
dlz,2e) = lim d(®wu: Tp) = Im > d(2k: Tea) < €
n— oo n—ocL_

So for all ng > Ny and all 2y € A,,, we have obtained an z € A such that

d(xz,z0) < €. Therefore A,, C A.. We need to show that A C (A,), for

o
all n > Ny. Solet x+ € A. Then =z € g\' A,, and we can find m > N,
m -~ iNQ

and y € A,, such that d(z,y) < 5. Also, if n > Ny, we have d(z,A,) <

N|m

dz,An) + H(Ap, + Ap) < 5+5=¢ 5o H*(A, A,) < € and this implies that

m

A C (A,). for n > Ny. Therefore finally we conclude that A, — A.

3. Let {A,}n>1 € Pr(X) and assume that A,, — A. Then given € > 0, we can
find no(e) > 1 such that for all n > ng(e), H(An,A) < € and so A C (A,)..
But by hypothesis A,, is compact, hence totally bounded. Thus we can find a
finite set F C X such that A, C F,, hence (A,). C F5.. Therefore A C F,,

which shows that A is totally bounded and closed, hence A € P (X).

N

4. The result is clearly true if A = B. So assume that A # B. Let € > 0 such
that A C B+ C. and B C A+ C,, where C. = {z € X : ||z|| < €} ( hence
B+ C. = B. and A+ C. = A, ). Then for every z* € X* with ||z*| < 1,
we have 6*(z*, A) < §*(z*,B) + € and 6*(z*,B) < 6*(z*, A) + €. Therefore
|6* (z*, A) — 6% (z*, B)| < € and so sup{|8*(z*, A) — &"(z*,B)| : ||lz*|| < 1} <
H(A, B). On the other hand, if ¢ = ||Sl|l|21 |6*(z*, A) — 6" (z*, B)| > 0, then we

have A € B+ C. and B C A+ C.. So H(A, B) < £ and thus the formula

follows.
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5. Note that for every b € B, we have d(x,A) < d(x,b) + d(b, A) and so
d(z,A) < d(x,B) + H(B, A). Similarly, we obtain that d(z, B) < d(z,A) +
H(B, A). Therefore
sup{|d(z, A) —d(z,B)| : x € X} < H(A, B).
On the other hand, we have
sup{d(b,A) : be B} =sup{d(b,A)—d(b,B):be B}
< sup{|d(z,A) —d(z,B)|:z € X}
and
sup{d(a, B) : a € A} < sup{|d(z,A) —d(z,B)|: x € X}.
So it follows that
H(A, B) < sup{ld(z, A) — d(z,B)| : z € X}.
Then we conclude that

H(A, B) = sup{|d(z, A) — d(z,B)| : x € X }.

1.2 Set-Valued Analysis.

Let X and Y be two nonempty sets.

Definition 1.2.1 (/4]/). A set-valued map F from X toY is a map that associates
with any x € X a subset F(x) of Y. The subsets F(x) are called the images or the
values of F' at x. The set-valued maps, are also called multifunctions, multivalued

Junctions or point to set maps. We set
Dom(F) = {z € X : F(x) # ¢},
F(X) = ,g\»F(‘I') ={y:3zx € X, y € F(z)},

Gr(F) = {(z,y) e X XY :y € F(x)},
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the domain, range and graph of F. We say that F is homogeneous if F(A\z) = \F(x)

for any x € X and A € R.

The inverse F'~ of the set-valued map F' from X to Y is the set-valued map

from the range of F' to X defined by
z€ F (y) &y€ F(x) & (z,y) € Gr(F).

The domain of F is thus the range of '~ and coincides with the projection of the
graph of F' into the space X, and in a symmetric way, the range of F' is equal to the

domain of F~ and to the projection of the graph of F' into the space Y.

Definition 1.2.2  ([5], [32]). Let X, Y be topological spaces. A set-valued map
F: X —2Y is said to be;

i. Closed valued, open valued, compact valued and bounded valued if for all
x € X, F () is a closed, open, compact and bounded set respectively in Y.
Furthermore, if Y is a topological linear space and Vax € X , F (x) is convex

subset of Y, then F (+) is called convex valued.

ii. A closed, open set-valued map if and only if GrF is a closed (open) set in the

product topology of X x Y.

i.

—

iii. Compact if U\_F (z) is relatively compact in Y.
AP,

iv. Locally compact if for any € X have a neighborhood V() such that L(J )F (z)
V(x

is relatively compact in Y.

Definition 1.2.3 (Definition 2.4,[1]). Let (X,d) be a metric space. A set-valued

map F : X — 2% is said to be;
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i. Bounded on bounded sets if F'(B) = U F (z) € Ppa(X) is bounded in X for

zEB

all B € Pyy(X), that is,
sup {sup{|y| : y € F (z)}} < oc.
z€EB
ii. Completely continuous if F'(B) is relatively compact for every B € Ppy(X).

Definition 1.2.4 (Page 36,/5]). Let F : X — 2 be a set-valued map. Then for

any set M C Y, we have the following,

e The lower inverse (weak inverse ) image of M under F' (-) is denoted by F~— (M)

and is defined as,

F (M) = {ze€X:F(z)NM # ¢}

U F~(y).

yeM

e The upper inverse (strong inverse or the core of the set M) image of M under
F (-), denoted by F*(M) and is defined as F*(M) = {z : F(x) C M}. Note
that F'~ (M) and F'*(M) coincide with the inverse of M viewing F as a func-

tion. If F' has non-empty values then it is clear that F* (M) C F~(M) for all
subsets M of Y.
Example 1.2.1

1. The inverse of a non-bijective function. Let the function f : R — R™* be given

by f (z) = z%. For y € R,
71 ) = {-vu. vy} -

2. F: R — P(R), defined as:

—.. 1. if x is integer,
Flz) = [-1,1]

{0}, otherwise.

is a set-valued map where Dom (F) = R and range of F' = [—1,1].
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Definition 1.2.5 (Definition 8.2.1,[5]). Let (2, X) be a measurable space and X

a complete separable metric space. Consider a set-valued map F : Q — 2X. A

>

measurable map [ : Q — X satisfying

Yw € Q, f(w) € F(w),

18 called a measurable selection.

Let F : R — P(R)\{¢}, be a set-valued map defined as F(z) = [z, c0), for all
x € R. Then the function f: R — R, with f(z) = z, for all € R is a selection of

F.

Now we present the continuity concepts for set-valued maps which can be found

in [29,34,38].

Definition 1.2.6 (Definition 1.1.1,[4]). Let X andY be two topological spaces and
F: X — P(Y)\{¢}, be a set-valued map, we say that F is upper semicontinuous
at xy € X, u.s.c. for short, if for any open V' containing F(xq) there exists a neigh-
borhood N(xg) of xg such that F(x) CV for all x € N(xo). We say that F' is upper

semicontinuous if it is so at every rg € X.

It is known that ( see [4] ), the upper semicontinuity of a set-valued map F :

X — 2Y\ {¢}, is equivalent to any one of the two following conditions,
1. F7(A) is open in X whenever A is open in Y,

2. F7(A) is closed in X whenever A is closed in Y.
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Example 1.2.2

Let F: R — P(R)\{¢}, be a set-valued map defined as

1,4  if ¢t=0,
F(t) =
[2, 3] if 0.

To see the upper semicontinuity at £ = 0, let V' C R be a nonempty open set such

that,

FO)=[14 €V
Take any neighborhood U of ¢ = 0, then we have either
F{t)=11,4 or F{£)=1[2,3]
for all t € U. This implies, Vt € U :
F(t)C[1,4 CV.
Hence, F is u.s.c. at t = 0.

In the following theorems, we collect some properties of u.s.c. set-valued maps.

Theorem 1.2.1 (Pro 2.17,[2]). Let X be a Hausdorff topological spaces, Y be a
regular topological space and F : X — P(Y)\{¢}. If F is upper semicontinuous with

closed values, then the graph of F is closed in X x Y.

Proof. Let (z,, y,,)“e, C GrF be a net converging to (z,y) in X x Y. suppose
y & F(x). Since Y is regular, we can find two open sets V;, Vo C Y such that y € V;,
F(x) C Va and Vi NV, = ¢. Because F is upper semicontinuous, we can find ag € J

such that for o > a, F(a) C Vs, while yy € V; , a contradiction. m
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Example 1.2.3

The converse of the above theorem is not in general true. To see that, Let X =

Y =R" and define F : X — Pi(Y) by

1
0, 2] if 2 >0,
10} it =0

Then clearly F' is closed. However F' is not upper semicontinuous at = = 0, since

F7([0,1)) = {0} is not open in X.

Theorem 1.2.2 (Th 1.1,[2]). Let X andY be two topological space such that X xY
s reqular. Let F' and G be two set-valued maps from X toY such that Vx € X,

F(z)NG(x) # ¢. suppose that:
i) Fisw.s.c at zp.

ii) F'(xq) is compact.

iii) The graph of G is closed.

Then, the set-valued map FN G : z — F(x) NG(z) is u.s.c. at zo.

Proof.

Let N = N(F(z9) NG(x)) be an open neighborhood of F(xy) N G(zy). We have
to find a neighborhood N(zo) of z¢ such that Vx € N(zg), F(z) N G(x) C N. If
F(z¢) C N, this follows from the upper semi-continuity of F. If F(zo) € N, then
we introduce the subset

K= f‘1(.’1'0) N N¢

that is compact ( since F'(xq) is compact ). Let P = Graph(G), which is closed.

For any y € K, we have y ¢ G(x¢) and thus, (z9,y) ¢ P. Since P is closed and
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X x Y is regular, there exists an open neighborhood N,(z) and N(y) such that

P N (Ny(xo) x N(y)) = ¢. Therefore
Vz € Ny(zo), G(z)NN(y) = o. (1)

Since K is compact. it can be covered by n neighborhoods N (y;). The union M =
.L”Jli\'r (yi) is a neighborhood of K and M U N is a neighborhood of F'(zg). Since F' is

u.s.c. at xg, there exists a neighborhood Ny(zy) of zy such that
Vz € No(zpy), F(x) CSMUN. (2)

We set N(z9) = No(xo) N (,-'QNU" (z0)). Hence, when x € N(xp), then (1) and (2)
imply that

i) F(z) C MUN,

i) G(z) "M = 6.

Therefore, F'(z) NG(z) € N when x € N(zp). m

Corollary 1.2.1 (Cor 1.1,[2]). Let X and Y be two topological spaces such that
X XY is reqular. If Y is compact and the graph of G is closed in X x Y, then G 1is

upper semicontinuous.

Proof.
We take F' to be defined by F(z) =Y for all x € X and we apply the above

theorem. m

Proposition 1.2.1 (prop 1.3,[2]). Let F be an upper semi-continuous map with
compact values from a compact space X toY. Then F(X) = U{F(z) : x € X} is

compact.

Proof.
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We shall prove that any open cover {Uy} ea of F(X) contains a finite subcover.
Since each image {F(z)} is compact, it can be covered by a finite number n(z) of
such U,. We write

Fiz)CU,= U Uy

— x i

1<i<n(z)
Since F is w.s.c. at z, there exists an open neighborhood N(z) of z such that
F(N(z)) € U,. But X is compact, it is contained in the union of p such neigh-

borhoods N (z;). Thus

F(X)C U F(N(z;)) S U U Us,.

= i

1<j<p 1<j<p 1<i<n(z;)
Hence, from the open cover {U,},ca we have selected a finite open subcover {U),, :

1 <j<p;1<i<n(x;)}. This proves that F'(z) is compact. m

Definition 1.2.7 (Definition 1.1.2,[4]). Let X and Y be two topological spaces
and F : X — P(Y)\{¢}. We say that F is lower semicontinuous at xg, l.s.c. for

short, if for every open set V in'Y with
V N F(xo) # ¢,
there exists a neighborhood N(xq) for xo such that
VN F(x) # ¢,

for all x € N(xg). F is called lower semicontinuous if it is lower semicontinuous at

each x € X.

Remark 1.2.1 (Page 43.[4]).

The above definition could be phrased by means of generalized sequences as
follows: given any generalized sequence z, converging to xy and any yo € F'(xo),

then there exists a generalized sequence y, € F(x,) that converges to y,. When
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X and Y are metric spaces, this last characterization holds true with usual (i.e.

countable) sequence.

Evidently, the lower semicontinuity of a set-valued map F' : X — P(Y)\{¢},
where X and Y are two topological spaces, is equivalent to any one of the following
conditions:

1. F~(A) is open in X whenever A is open in Y

2. F"(A) is closed in X whenever A is closed in Y.

Example 1.2.4
1. Let F : R — P(R)\{¢}, be a set-valued map defined as
[1,4] if t=0,
F(t) =
2, 3] if ¢ #0.
It is not l.s.c. at t = 0. To see that if r € F (0) = [1,4] such that 3 < r < 4

and
V=((r—er+e C(3,4),

for a sufficiently small € > 0, there exists a neighborhood U of ¢ = 0 such that

for some t € U(0) we have F' (t)NV = ¢. Note that F' is upper semicontinuous

at t =0.
2. Let F : R — P(R)\{¢}, be a set-valued map defined as

[0,1] if 0,

F(t) =
{3} i (=0

Clearly F' is lower semicontinuous. Notice that F' does not have closed graph. So, we
need not think about characterization in terms of GrF which is indicated in u.s.c.

case. So we have the following important characterization of lower semicontinuous.
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Proposition 1.2.2 (Proposition 1.2.26,[28]). Let X be Hausdor{f topological space
and Y be a metric space and F : X — P(Y)\{¢}, then F is l.s.c., iff for every
yey,

z — p, =d(y, F(z))

18 U.S.C.

Proof.

We will show that for every A € R, the upper level set Uy = {z € X : ¢ (z) > A}
is closed. Indeed let {z,},c; € U, be a net and assume that z, — = in X. Given
e > 0 we can find y € F(z) such that d(v,y) < ¢,(z)+¢. Also since F(.) is l.s.c., we
can find ng € I such that for all n > ng we have F(x,) N B(y,&) # ¢. Thus we can

find y, € F(x,) such that d(v,y,) < ¢,(z) + 2¢ and so ¢,(z,) < ¢,(x) + 2¢, which

@,
in turn implies that A < ¢, (x) + 2¢. Let € | 0, to obtain A < ¢, (x). Thus z € U,
and so ¢,(.) is u.s.c.

We need to show that if V' C Y is open, F~ (V) is open in X. Let x € F~ (V).
Then F(x) NV # ¢ and choose y € F(z) NV. Then there exists € > 0 such that
B(y,e) C V. Also since p,(.) is u.s.c., given this € > 0, we can find U € N(z) such
that ¢, (') < ¢,(z) +€=¢ for all z’ € U. Hence F(z') N B(y,e) # ¢ for all z’ € U
and so F(2')NV # ¢ for all ' € U. Therefore U C F~ (V) which means that F~ (V')

is open and so F(.) is l.s.c. m

Definition 1.2.8 (Definition 1.1.3,[4]). Let X andY be two topological spaces. A
set-valued map F : X — P(Y)\{¢} is said to be continuous at xo € X if it is both
u.s.c., and l.s.c. at xo. It is said to be continuous if it is continuous at every point

x e X.
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Definition 1.2.9 (Definition 1.1.2,[19]). Let X andY be two normed spaces. We

say that F is ¢ — d—u.s.c. at xg € X if for every € > 0 there exists 6 > 0 such that
[|z — zo|| < 6 = F(z) C By (F(x0),¢),

which is equivalent to
||z — 20| < 6 = e((F(x), F(xo) < €.

We say that F is e — 0 — l.s.c. at xy € X if for every € > 0 there exists § > 0 such
that

||z — zo|| < & = F(x0) C By (F(x),

m

),

which is equivalent to
|z — x| < 6 = e((F(xo), F(z) <e.

Proposition 1.2.3 (Proposition.1.1, Proposition.2.1,[24]). Let X and Y be two

normed spaces, F is a set-valued map from X to Y. Then we have:

1. If F'is u.s.c., then F'is ¢ — § — u.s.c. The converse is true if F' has compact

values.

2. If Fise— 0 — l.s.c., then F is [.s.c. The converse is true if /' has compact

values.
Remark 1.2.2 (Examplel.2.62,[28],Page 45,[4]).

1. To show that the converse of the assertion (1) in the preceding proposition is
not true if the values of F' are not compact consider the following Example.

Let X =[0,1], Y =R and let F : X — 2Y\ {¢} be defined by

[0,1] if 0<z <1,
F(z) =
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It easy to check that F' is € — § — w.s.c. but not u.s.c. at x = 1. Indeed note

that F* [(—1,1)] = {1} not an open set.

2. To show that the converse of the assertion (2) in the preceding proposition is
not true if the values of F' are not compact consider the following Example.

Let F : R — P(R?)\ {¢} be defined by
F(t) = {(t,at) : t € R}.
Obviously F (-), is l.s.c. but not € — § — l.s.c., since for any t # tg, v = (x,y)
sup{d(v, F(t)) : v € F(tg)} = o0,
which implies that there is € > 0 such that

e (F(to), F(t)) > .

Definition 1.2.10 (2.6,[1]). Let E be a normed space. A multivalued function
F: E — Py(E) is called,

(i) v-Lipschitz if and only if there exists v > 0, such that

H(F(z), F(y)) < vd(z,y).

(ii) Contraction if and only if it is y—Lipschitz with v < 1.

(iii) F has fixed point if there exists x € F, such that x € F(z).

1.2.1 Measurable multifunctions.

Definition 1.2.1.1 (Definition 2.1.1,[28]). Let (£2, %) be a measurable space and
(X, d) a separable metric space and F : Q — 2%\ {¢} be a multifunction. F is

said to be:
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1. “Strongly measurable” if for every U C X closed, we have

F-(U)={weQ: F(w)NU # ¢} € I,
2. “ Measurable” if for every U C X open, we have

F-(U)={weQ: F(w)NU # ¢} € I,

3. “Graph measurable” if
GrF ={(w,z) e Qx X :z € F(w)} € ExB(X),

where Y®B (X)) is a product o- algebra on  x X (i.e. the smallest o- algebra

containing all products A x B, with A € ¥, B € B(X)).

Remark 1.2.1.1 (Proposition 2.1.8,[28]).

Recalling that for U C X open we have F' (w)NU # ¢ if and only if F (w)NU # ¢.

Thus F : X — 2¥ is measurable if and only if F : X — P (X) is measurable.

Proposition 1.2.1.1 (Proposition 2.1.13, Proposition 2.1.14, [28]). Let (£2,X) be

a measurable space and (X, d) a separable metric space, F': Q — Py (X),
1. Strongly measurability=- measurability.

2. If

o0 -
X = UIA,Z.

n=
where K, are compact sets (i.e., X is o-compact) then the data in assertion 1
are equivalent.

Proof.

1. Let U C X be open. Recall that in a metrizable space, every open set

is an F,-set (i.e., countable union of closed sets). So U = g]C,,, C.: € X
n>
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closed n > 1. We have FF~(U) = F—( L>JlC,,) = U1F_ (Cy) € Y. Hence F(.) is

n>
measurable.
o0
2.Let C C X be closed and let X = K,, where K,, C X compact. Then
n=1

F=(C) = F~( EJ:C (LK) = OleF_(Cﬂ K,) € >.. That means that F is

n=

strongly measurable, then measurable. m

Proposition 1.2.1.2 (Proposition 2.1.4, Proposition 2.1.7, [28]). Let (£2,X) be a

measurable space and (X, d) a separable metric space, F': Q — 2% then,
1. F measurable if and only if
Ve e X,w—d(z, F (w)) =inf [d (z,2') : 2’ € F (w)],
is a measurable Rt = R* U {oc}-valued function.

2. IfF () e P (X) is measurable, then GrF' is measurable.
Proof.

1. Let A > 0 and define Ly(z) = {w € Q : d(z, F(w)) < A}. Then if U =
B(z,\), we have Ly(z) = F~(B(z,\)) € > and so we conclude that w —
d(x, F(w)) is measurable.

Now for every x € X and every A > 0, we have F~(B(z,\)) = Li(z) € >_.
Now let U C X be open. Then because X is separable U = L>JIB (n, A\n) and

so Fm(U) = U F (B(x,,\)) € >_. Therefore F(.) is measurable.

n>1
2. Since F(.) is closed valued we have that GrF = {(w,z) € Q x X :
d(z, F(w)) = 0}. But (w,z) — d(z, F(w)) is measurable. Therefore GrF €
> xB(X). m
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1.2.2 Measurable selections. Measurable multifunctions with values in

complete separable metric space.

Theorem 1.2.2.1 (Selection Theorem) (Th 8.1.3., [5]). Let (2, X) be a measur-
able space, X be a complete metric space and F': 2 — P, (X) is measurable,
then F' admits a measurable selection (i.e., there exists f : 2 — X measurable

such that for every w € Q, f (w) € F (w)).

Proof.

Let d(-,-) be a complete metric on X defining its topology. Without any loss
of generality, we may assume that the ddiameter of X is strictly less than one. Let
{#s},>, be a countable dense subset of X. Vw € €2, let n > 1 be the smallest integer
such that F(w) N B°(2,,1) # ¢. We set fy (w) = x,. Then f;,(-) is measurable.
Furthermore,

Yw e Q,d(fo(w),F(w) <1.

Assume that we already constructed measurable maps .We will construct a sequence

of measurable maps f, : €2 — X such that

£ x =X

T = T k=0, ,m,

satisfying
1
Q) d(fx (W), F(w)) < o for every 0 < k < m and every w € 2 and

(ii) d (fe (W), frr (W) <

forevery 0 <k <m—1,and everyw € Q2.Vn > 1

1
2k—1

D,={weQ: fr(w)=2z,}.

The sets D» is disjoint and 2 = U D». Furthermore (i) implies that

n>1

Yw € Q, F(w) N B°(z,,2™™) # ¢.
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Fix w € Q and let n be such that w € D,,. Consider the smallest integer r such that
F(w) N B*(x,,2~™) N B?(z,,2~")) £ ¢,

and set f,,.1 = x,. Then by the induction hypothesis, we can find z € F(w) such
that d (fini1 (w), 2) < 27™*. Since {z,},, is dense in X , there is n > 1 such that

dl@ns2) <27 and

d(fm @), frora W)) < 27™ 42704

< 2—m+l ]
Clearly, this defines a measurable map
fm—l 12— X, fm+1 = Tn

and (i),(ii) hold true with m replaced by m + 1. Moreover from property (ii), we see
that { fx (w)},>o is Cauchy in X (in fact, uniformly in w € ). Since X is complete,
there exists f :  — X such that f, (w) — f(w) for all w € © and of course, f(-)
is measurable. Finally from property (i), we have that d (f (w), F(w)) = 0 for all

weNandso f(w) € Flw) forallwe Q. m

Theorem 1.2.2.2 (Th 2.2.4, [28]). Let (2, %) be a measurable space with p > 0,
X a separable metric space and F : Q — P,(X). Consider the following

statements:
1. F~(D) € X for all D € B(X),
2. F'is strongly measurable,
3. F is measurable,

4. For all z € X, w — d(z, F(w)) is measurable,
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5. F has Casting representation, that is: there exist a sequence {f,},., of mea-

surable selections of F' such that
Yw € Q, F (w) = W
6. GrF € ¥ x B(X).
Then the following are true:
(a) (1)=(2)=(3)=(4)=(6).
(b) If X is complete, then (3)<(5).
(¢) If X is o-compact, then (2)<(3).
(d) If (2,3, 1) is a complete o— finite measure space and X is a complete space,
then (1)=-(6) are all equivalent.

1.2.3 Calculus of Measurable Multifunctions.

In this part we will present the most important theories that help us to calculate of

measurable of multifunctions.

Theorem 1.2.3.1 “Union and Intersection” (Propstion.I11.4,[16], Th 8.2.4, [5]). Let
(€2, ¥) be a measurable space and X be a metrizable separable space, F}, : 2 —
Pr (X),n € N. Then if Fy, F, are measurable multifunctions the multifunction
w — Fi(w)N Fy(w) is measurable, more generally t+ — NF,,(t) is measurable
and if UF,(w) is compact, then w — UF,(w) is measurable. Moreover if (2, )

be a complete o-finite measure space and X be a Polish space then NF),(w)

and UF,,(w), are measurable.

Lemma 1.2.3.1 “Direct Image” (Theorem 8.2.8, [5]). Let (€2, A, 1) be a complete

o—finite measure space, X a complete separable metric space and F : 2 —
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2% with nonempty closed images. Consider a multivalued function G from: €2 x
X to P(Y) .Y is a complete separable metric space such that for every x € X
the multivalued function w — G(w,z) is measurable and for every w € Q
the multivalued function x — G(w,z) is continuous. Then the multivalued
function w — G(w, F'(w)) is measurable. In particular for every measurable
single-valued function z : Q — X, the multivalued function w — G(w, z(w)) is
measurable and for every Carathéodory single-valued function ¢ : 2 x X —

Y, the multivalued function w — @(w, F(w)) is measurable.

Proof.

It is not restrictive to assume that F' has nonempty images. Then, there exists a
dense sequence (f,), ., of measurable selections of F.

We claim that the map w — G(w, f,(w)) is measurable. Indeed consider a
sequence of measurable simple maps f,r from Q to X, converging pointwise to
fn when k — oco. Then, since f,;. are simple, for every k the set-valued map

w — G(w, fr(w)) is measurable. On the other hand, since G(w,.) is continuous,

Yw € Q, lim G(w, fur(w)) = G(w, fn(w))

k—o0
and we deduce that this limit is again a measurable map.

On the other hand, since GG is continuous with respect to the second variable and

(fn),>; 1s dense, for every w € 2

G(w, F(w)) = L>JlG('l1!,f,,(11r))
Theorem (1.2.3.1) ends the proof. m

Theorem 1.2.3.2 (ThIIL.41, [13]). Let (£2,X) be a complete o—finite measure
space, and E a separable Banach space. Let f: 2 — E be a measurable map

and p : Q — [0, 00) a measurable function. Then




BB

et § S 230 — pl) sy
72024 — sl — 2 1 syl g 5

WWW.ajsp.net

ISSN: 2663-5798 || Arab Journal for Scientific Publishing

el R R S .

1. w — B(f(w), p(w)) (the closed ball with center f(w) and radius p(w) is a mea-

surable multifunction),
2. If F:Q — Py(FE) is measurable such that for all w € €, the set

Y(w) ={r € Fw): [[f(w) — 2| = d(f(w), F(w))},

is nonempty, then there is a measurable function g : 2 — E such that g(w) €

Y(w), a.e. , and
1f(w) — g(w)|| = d(f(w), F(w)), Vw € €.
1.2.4 Integration of set-valued maps.

This section deals with the integration of measurable multifunctions. Throughout
this section, let (€2, X, 1) be a complete o—finite measure space and X a separable
Banach space supplied with the norm ||-||. A single-valued function f : Q@ — X
is called “Bochner” integrable if f is strongly measurable (the a.e.-limit of step
functions f,) and the function w — || f(w)|| is Lebesgue integrable. The integral of

f is defined as
/f(w)(l/t(w) = lim /fn_(w)(]/l.(w),VE eX.
E E

For every p, 1 < p < oc let LP(£2, %, ) be the vector space of all equivalence

classes with the norm

11l = ( / AP ).
Q

It is known that LP(€2, X, u); for some p > 1 is a Banach space.

Let F' be a set-valued map from €2 to the nonempty closed subsets of X. F'is
called “integrably bounded” if there exists a nonnegative function k € L' (2,3, )
such that

Vf(w) € F(w), ||f(w)| < k(w) a.e. in .
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Clearly if I is measurable and integrably bounded, then the family
Sy={fe L' I,p): f(w) € F(w) a.e. in O}

is not empty. Let F : @ — 2%\ {¢}, be a set valued map with S} # ¢. Then the set

valued map (Aumman) integral of F' is defined in the following (see [16]).

Definition 1.2.4.1 Let F : Q — P,(X) be a measurable set-valued map and

S} # ¢. Then the set-valued (Aumman) integral of F is defined in the following

[F@an @) ={ [ @adnt): £ € sh.
Q Q

In the following theorem, we collect some properties for the integral of F.

Theorem 1.2.4.1 (Propstion.8.6.2, Theorem8.6.3, Theorem8.6.4, [5]). If F,F}; :
Q — Pu(X),j = 1,2 are measurable multivalued maps with Si, Sg; # ¢, and

set G(w) = Fi(w) + Fy(w). Then

1. If F' has convex images then the integral [F ( w)dp (w) is convex.
Q

2. [AF (w) dp(w) = )\fF (w) dp (w) , for all A € R.
Q
& f(oF )dp (w) =eo[F (w) dp (w
Q

5. If the values of F are convex compact subsets of X, then [F (w)du(w) is
)
convex compact subset of X.

6. If X = R"™ and p is nonatomic (i.e. ¥ does not contain atoms, where A € ¥ is
called an “atom” if ;1(A) > 0 and for every measurable subset A; C A, p(A;)

is equal to either 0 or u(A)), then f F(w) dp (w) is compact convex and the

extremal points of @o( / F (w)dp (w)) are contained in [F (w) dp (w).
Q
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7. If p is nonatomic, then

[F@dn) = [F@)du@ = [0 F @) dnw).

Q Q Q

Furthermore, when X is reflexive and F' has convex images, then

/F (w)dp (w),
k9!

is closed.

Proof. 3. It is clear that

m/F(I/l (= /m Fdpu.
ke ke

To prove the converse inclusion, fix k € L*(Q, R, 1) with strictly positive values and

a measurable selection g of ¢oF'. The support function
w — o(c F(w),p) =o(F(w),p)
is measurable and observe that for every p € X~

(p, /g(],u) < /U(W F(w),p)u(dw) = /(T(F(w).p)/l((lw).
Q

Q Q

Fix £ > 0 and set ¢(x) = (p,x). On the measurability of inverse images applied with
Gw) = [0(F(w), p) — ek(w), o (F(w),p)]
yields that there exists a measurable selection f € F such that
(p, f(w)) = o(F(w),p) — ek(w).
Consequently

/.U(F(w).p)/l.((lw) < /((p. ) +ek)du < (7(/ Fdpu,p) +¢||k| 1 -

‘Q
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Since £ > 0 and p € X* are arbitrary, using the separation theorem, we end the

proof.
4. To prove the equality it is enough to show that

. / Gdp © / ) din / Py () dps (w)

Q Q Q

since the other inclusion is obvious.
Consider a measurable selection g of G and let (f;,),>1 be dense sequence of
measurable selections of F;. Then (fi,+ f 2m )n.m>1 i a dense sequence of measurable

selections of GG. Set
Gum(w) e {fll(w) == fZ/(‘/'U) | S i S ”*1 S J S 7'”}-

Then
Vwe N, lim d(g(w),Gpm(w))=0.

n—o0,m—oc

There exists a measurable selection g, of G,,, satisfying
“(/(W) = gnm(w)“ — d(g(w), Gnm(w))-

Thus gnm(w) € Fy (w) + F» (w). Then we obtain measurable selectoins ,’;m of F; such
that f1 + f2 = gum- This yields

d /g,,,,,(l//. /Fl(l/l, + /Fg(lu = 0.

Q Q Q

By taking the limit when n, m — oo, the statement ensues.

6. Fix f; € F,i= 1,2 and A € [0,1]. We have to prove the existence of f € F

A Z fudp+ (1= ) Z fodps = Z fdu.

Define the vector measure v : X — R" x R" by

satisfying

() = ([ fudu, [ fad).
A

A
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Then v is finite and nonatomic. Lyapunov’s Theorem implies that the range of v is

convex and compact. Since
w(6) = {0} & v(9) = ( / fudp, / il
Q Q

there exists A € X satisfying v(A) = \v(92), i.e.,

/\/fld// = /fl(i/l, i /fgd/l = /fg(l/l.
ko) ‘A Q ‘A

Therefore the map f = x4 f1 + Xq\ 4 f2 is an integrable selection of F' we were looking
for. We know that the integral [Fdpu contains all extremal points of the convex set
Q
co[Fdp.
Q
Finally, if F is integrably bounded, then the set @ [ F'dp is compact. Since [Fdy
Q Q

is convex and contains all the extremal points of its closed convex hull, we deduce

from Caratheodory theorem that

4 Fdp = co( / Fdp) = / Fdp).

Q Q
The proof is completed.
7. We have to show that for all f; € F,i=1,2, ¢ > 0 and \ € [0, 1], there exists

f € F satisfying
)\/flrlll +(1— )\)/f-_g(l/l. - /fd/l <e.
Q Q 2
Define the vector measure v : X — X x X by
v(A) = (/fl(ljl. /fg(]/l).
A A

Then the closure of the range of v is convex. Since

30




L1 EL

et § S 230 — pl) sy
72024 — sl — 2 1 syl g 5

WWW.ajsp.net

ISSN: 2663-5798 || Arab Journal for Scientific Publishing

ISV e, 2 geme S S M .

we have for some A € X

A = [ |+ |3 [~ [ pau <<
Q A Q A

Setting f = x 4/1 + Xq\af2, we deduce that [ Fdu is closed and convex.
Q
To prove the last claim, assume that X is reflexive and that F is integrably
bounded and has nonempty closed convex images. Then the set F' is weakly compact

in o(LY(Q, X, 1), L=(2, X, 1)) and the proof follows. m

1.3 Fractional Calculus.

Fractional calculus is the branch of calculus that generalizes the derivatives (and
integrals) of a function to non-integer order, allowing calculations even making to
the number line and the extension of this map to any fractional “differintegrals”.
Despite “generalized” would be a better option, the name “differintegrals” is used
for denoting are kinds of derivative (and integral) which are must include integral
transforms. We will use the following definitions and notations, which can be found

in [20, 33, 36].
Definition 1.3.1 (Definition D.1, Theorem D.6 [20]).
1. The function I" : (0,00) — R, defined by
['(a) = /xt“le‘d[. (1.8.1)
0
is called Euler’'s Gamma function (or Euler’s integrals of the second kind).

2. The Beta function (or Euler’s integrals of the first kind), defined by

['(a)D(3)

1
B.a)= | 1= dt=—""",
B(3,«) '/0 (1—-¢)"""d T(a+ )
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In the following we will mention some of the iterative relations for the Gamma

function (see Theorem D.1,[20]):

i. By integration (1.3.1) by parts one checks that for all &« > 0, we have the
recurrence relationship
Fa+1) =al (). (1.3.2)
00
Further we have I' (1) = / etdi=—e"" |P=1.
0

ii. Foralln e NU{0},T'(n+1) =nl

iii. From the relation (1.3.2) we can define I' on (—o00,0) — Z by:

M(a) = 22+ 1),
For example:
r(—%) = F_(i) = —21*(%) =27
and z
5= = iy =5V

Definition 1.3.2 (Definition 1.1,[20]). Let J = [a,b] be an interval and n € N,

1. By D,, we denote the operator that maps a differentiable function into its

derivative, i.e.

Df(t) = 1) = F(t).

2. By .I;, we denote the operator that maps a function f, assumed to be f €

C'[a,b] , into its primitive centered at a, i.e.

alef ()= /If(s)ds.w € la,b].
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3. For all n € N we use the symbols D}' and , ;" to denote the n-fold iterates of D;
and ,I;, respectively, i.e. , we set D} = Dy, I} = ,I;, and D} = D,[D?']and
2y = dy {,,I,"*l] for n > 2. Moreover by fundamental Theorem of classical
calculus we have D}, I f(t)] = f(t) and I]'[D}f(t)] # f(t), for all n € N
(i.e. D} is a left-inverse not right-inverse) to ,I;*. In fact, ,I}'[D}] have the
expansion

o — a)k

LHDEF) = 1)~ SO

k=0

G >0

where, f € C*~Vlq,b].

1.3.1 Riemann-Liouville Differential and integral Operators.

In the following we proved the calculation of the n-fold primitive of a function f(t)

to a single integral of convolution type.

Lemma 1.3.1.1 (Lemma 1.1.1, [20]). Let f be Riemann integrable on [a,b]. Then
for all t € [a,b] and n € N (N = {1,2,...}), the unique solution of the IVB
problem

y™ (t) = f(t),
y(@) =y (a)=---=y"V(a) =0,

is given by Cauchy formula,

W) = gy [ -9 Fs
1 : n—1 g .
= m/ﬂ (t—s)""" f(s)ds,Vt € [a,b].

Proof.
We will use induction to prove our claim.
For n =1 we have

Y (t) = f(t), y(a) =0.
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Solving this equation we obtain

(f—5)17]
)ds =
/”1, ds / 5

Since y(a) = 0, we then have
ot
= / f(s)ds.

(s)ds.

Now we assume that

1 " ol ane
s l)!,/“ (t —s) f(s)ds

y(t) = n

is true for n and show that the equation is also true for n + 1.

Consider

y"t @) = f@)

y(@ = y'(a)="---
Since y™*V (t) = (/)™ (t), let u(t) = ¥/(¢). Then

u™(t) =

u(a) =

f(t)
v [a) = vvv =

Using the induction hypothesis we observe that,

./,,'("/ (s)ds =

y(t) —yla) =
_ / %f’(s)dﬁ.

Since y (a) = 0, then

= 4™ (a) = 0.

w1V (a) = 0.
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Note that, since f(t) is the n'* derivative of y(¢) and y (a) = ¥/ (a) = --- =y (a) =

0, we may interpret y(¢) as the n'* integral of f(¢). Thus,

n g 1 i n—1 ¢ :
L f(E) = =1 1)!/a (t—s)""" f(s)ds.
Finally, if we change the fractional into Gamma function, then
11 (t) L =9 (s
= — — 8 s)ds
ok m—1)1J, -

1 [ = > >
= l"(n)[ (t—s)" " f(s)ds,

the Riemann- Liouville definition of a fractional integral. m
The existence of the integral ,I}* is obvious when n > 1. In the case 0 < n <1
though, the situation is less clear at first sight. However, the following result asserts

existence , I} also.

Theorem 1.3.1.1 (Th 2.2.1, [20] ). Let f € L' [a,b] and n > 0. Then, the integral

7 f(t) exists for all a.e. t € [a,b] . Moreover, the function .17 f(t) € L' [a, b].

Proof.

We write the integral as:

/ﬂ (6 = )" f(s)ds = / * b.(t— 8)(t)ds

00
where
! for 0O<u<b-—a,
¢1(u) =
0 else,
f(u) for a<u<b,
Py(u) =

0 else.

By construction, ¢; € L'(R) for j € {1, 2}, and thus by a classical result on Lebesgue

integration the desired result follows. m
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Definition 1.3.1.1 (Definition 2.1,[20], Lemma 2.2,[44]). Let X be a Banach space

and ¢ > 0. The operator ,I} is defined on L'([a,b], X), by

() = ﬁ | =9 res

for all t € [a,b] is called the Riemann-Liouville integrals operator of order

gand with lower limit a. For ¢ = 0, we set I’ = I, the identity operator.

When a = 0, we write oI/ f(t) = f(t) * ¢, (t), where

g—1
—. Vit >0,

P, (t) = I'(q)
0, Vit <O0.

Theorem 1.3.1.2 (Th 2.2.7, Th 2.2.9, [20]). Let n > 0, m > 0, then the fractional

integrals have the following properties,

L. Interchange with limit operation, that is if (fi),>, € C [a, b], is uniformly

convergent sequence. Then

(7 lim fi) (6) = (fim (uI7) fi) ()

In particular, the sequence of functions (.17 f1.) _,is uniformly convergent.

k

2. The continuity with respect to the fractional integrals, that is if 1 < p < o0

and (my),-,be a convergent sequence of nonnegative numbers with limit m.

Then, for all f € L [a,b],

lim || ;" f —
k—oc

oI fllo = lim sup |I™ f — oI f| =0,

k—ooye [a,b]
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Proof. 1. We denote the limit of sequence (fi) by f. It is well known that f is

continuous. We then find

TP fi(t) — JIPF(H)] < rl,, / (Fls) — P Ge— L

)
L [ n=lds
o e~ Fllo / (t —5)"a

= ﬁ”‘h Fllss (& —a)f

1—\( T 1) “f/w f“'x: (h i ”‘)”

which converges to zero as k — oo uniformly for all ¢ € [a, b].

To prove (2), we refer the reader to([20], Theorem 2.2.9). m
Remark 1.3.1.1 (Example 2.3,[20]).

In assertion 2, if m = 0 then the sequence (my),~, must be decreasing. Moreover

if f(t) = 1, we have that
(t—a)™

JHf () = =——,
e f ) L(mg +1)

0, o1;"* f (a) = 0, for all £ whereas

i f(a) = oI f(a) = f(a) =1

i.e. we do not even have pointwise convergence. So to occur the uniform convergence
r) -
when m = 0, f (f) must be take the form O((t — a)®) as t — ¢ for some § > 0.
One important property of integer-order integral operators is preserved by our

generalization:

Theorem 1.3.1.3 (Theorem 2.2, Corollary 2.4, [20]). Let m, n > 0 and ¢ €
L' [a,b]. Then,
”]';’I [” f“kr:\([)] — I;”"l\,‘_’;.
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holds almost everywhere on [a,b]. If additionally ¢ € C'[a,b] or m +n > 1,

then the identity holds everywhere on [a, b]. Moreover
Mo IPe()] = oI} (oL (1)]-

Proof.
We have

TPLI O] = e [ =9 [ o= 00 () s

In view of Theorem (1.3.1.1), the integrals exist, and by Fubini’s theorem we may

interchange the order of integration, obtaining

1

qu”L[u f““pj(f)] e ,n)l” ” / / Hl 1 S _'“)u : ¥ ([I)([S([/l
i
)

ot
W /” O(ll) ,/I, ( = 5)'"—](5 2 ,U)"_]dsd/l,

The substitution s = p + k(t — p) yields

oI oI (t)] = ﬁr()/ O(;I)A [(t — ) (X — &)™ [k(t — p)" 2 (t — p))dkdy
1L 't , m+n—1 i — Y™ " Y dkdy
T T(m)I( )/” ¢ (1) (t = n) /0 (1 — k)™ k" dkdp.

We know that j;(l — k)1 ldk = rr((':'“)i(';) and thus

t
TP LI o(t)] = [ o) =t = arrne()

almost everywhere on [a, b].

Moreover, by the classical theorems on parameter integrals, if ¢ € Cla,b] then
also ,I}'¢(t) € Cla,b], and therefore ,I]*[,I]'¢(t)] € Cla,b], and I]" " (t) € Cla, b
too. Thus, since these two continuous functions coincide almost everywhere, they
must coincide everywhere.

Finally, if ¢ € L' [a,b] and m + n > 1 we have, by the result above

SPLB )] = TP = W Lell)
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almost everywhere. Since ,I}¢(t) is continuous, we also have that ,I;"™"p(t) =
AT Ihp(t) s continuous, and once again we may conclude that the two func-
tions on either side of the equality almost everywhere are continuous; thus they must

be identical everywhere. m
Example 1.3.1.1 (Example 1.3,[27], Example 2.2,[20]).

1. Let f(t) = (t —a)®, 8> —1 and q > 0. Then

dif(t) = %{1)/ (s —a)?(t — s)9 lds
1 q+3 - f q—1
= - e vr
a1}

- t —a)dtB.
F(q+5+l)( %)

This result is precisely is a generalization of the integral operator when ¢ € N.

2. Let f(t) = exp(At) with some A > 0. Compute oI/ f(¢) for n > 0. In the case

n € N we obviously have
oI f(t) = A" exp(At).

However, this result does not generalize in a straightforward way to the case
n ¢ N. Rather, in view of the well knows series expansion of the exponential

function, Theorem (1.3.1.2), and the last example, we find

- k - k
ol f() = ol [Z(A,,..) l 0= > D [(o)“] (t)
k=0 k=0
IR NPV B
N ;F(k+n+l = ;1‘ A+n+1)

and here the series on the right-hand side is not exp(At).

Definition 1.3.1.2 (Definition 2.2,[20], Lemma 2.2,[44]). Let X be a Banach space,

g > 0 and m = [g| (denote the smallest integer greater than or equal ¢) and
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f € L'([a,b] , X). The operator ,Dj, defined by

1 d

t
_ (_)m/ (f _ S)m—u—] f(s)(]s i q ¢ N.
’I;D;?f - Dfm [”Ilquf] s ) By (771 - q) dt .

Df(t)if g e N,
(1.3.3)

is called the Riemann-Liouville fractional differential operator of order ¢. For
n = 0, we set

L 10

a D[, = 1*
the identity operator, then we easily recognize that

LD I = 1I,¥q 20.
The next result contains a very simple sufficient condition for the existence of
a D;’f
Proposition 1.3.1.1 (Proposition 1.1.1, [27]).

a. If f € AC [a,b], then D] f exists a.e. for all 0 < ¢ < 1. Moreover 2D} f €

1
L?[a,b] for 1 < p < = with
q

170 = e {f@ -+ [ 7 -9 7as)

b. If f € AC" ![a,b], n = [q], then FDif exists a.e., for ¢ > 0 and has the

representation
LDq f) _ i I’((I (f (L)] —-q + f 7,) S )n qg—1 (1%'
@ =T~ I'(n—q) ‘

(1.3.4)
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Proof.
a. We use the definition of the Riemann-Liouville differential operator and the

fact that f € AC [a,b]. This yields

EDIf(t) = 11_q £ / F(5)(t — 5)"7ds
[ (s [ o) e
= ﬁ% (f(a)/ _—+/ / f(u)(t — s) %du d.g-)
F(ll—q)((t—a u//f (£—2) duds>~

By the Fubini’s Theorem we may interchange the order of integration in the double

integral. This yields

p B 1 a )1 e
cDlf(t) = T(i—9q ((f—”)” (h‘/ £ (lu>.

e standard rules on the differentiation of parameter integrals then give the desire
The standard rul the diff tiat f t t Is tl the d d

representation. The integrability statement is immediate consequence of this repre-
sentation using classical result from Lebesgue integration theory.
b. By definition, D7 f(t) = LDp I f(t) and

1 2 =g=i ds.
m/(f—) f(s)d

In view of the smoothness assumptions on f, we may integrate partially in this

uan()

integral and find that

1

n—q = n q p 1 — e\ 9 f(
oI f(R) = m( = f(a)|a=c /{Im(f s)"1f'(s)

1

s . n—q n—q+1 gt
= o 1)(t a)" f(a) + oI} F 5.

The smoothness assumptions allow us to repeat this procedure for a total of n times;

we find
n—1 n—
njlu—qf-(t Z f — (1 1‘+ q f("')(a) s "‘It‘zu—qf(n)(t).
: 'k+n—qg+1)

k=0
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Thus,
: I n—1 f = ” A q *) )
,Dtl 3 f - Dn u [n q . a) + a[,,_,l (n f .
a tf() t J(t EF (]+lf (a) Hallab i 7

But the expression on the right-hand side of the equation is just

Tt —s)"1L, e
/ I'(—q) sheiia

Example 1.3.1.2 (Example 1.3,[27]).

Compute ;Dj t°, 3 > —1 and ¢ > 0. Let [¢] = m. We have

‘ 1 m 1 i |
LDq frj — (_ —/ t—s m—q—1 ,""‘j([(’
(i dt F(rn — (1). A ( S) s”as
1 (] m ' S| v
= S a5 gt 1 — w11 84,
I'(m —q) ((H.) { /“ ( ) u” du

1 FB+1)Ir'(m—gq) (d\" J—
'm—q) T'(B+1+m—gq) \dt
rpB+1) 'B+1+m—gq)

— 2‘87’1
r@+1+m-—yq) r—m+m-—q+1)
I (')) -+ 1) g
- 7 yB-a 1.3.5
T(B—q+1) (L.3:5)
Note that, due to the poles of the Gamma function at the points 0.—1, —2, —3, .....,we
obtain
B(B-1)---(B—q+1), B—q¢{-1,—-2,-3,..},e N.
r@E+1) g
_— = 0, f pB-qe{-1,-2,-3,..}.
T(B—q+1) i { ;
— ,8=0,q¢N
Pl —ig)

Theorem 1.3.1.4 (Properties 2.2 and 2.3, [33]). Let ¢ > 0, 3 < g and f € L'[a,b).
Then

(1) oD} oI f(t) = oIf P £(2), ace.
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In particular, when 3 =k € N and k < ¢, then
”Df (llf().f‘(f) — (l]-fnik.f'(f)‘ a.e.
(2) If the fractional derivatives ,Df f(t) and r,D;’“"f(t) exist, k¥ € N, then ,DF
DIf(t) = «DI* (1), Vi € [a, b].
Theorem 1.3.1.5 ([20], Theorem 2.14, Theorem 2.22)
Let ¢ > 0. Then
(1) for every f € L' [a,b],

LRI = fan,

so L DY is left inverse of I} f.

(2) If f € L'(a,b] and there is ¢ € L' [a, b] such that I = f then

JI2DIf] = f,ae

a
The following example shows that “D{ is not right inverse to 2D/ in general.

Example 1.3.1.3.

Let
=8 q=0t>0
From examples (1.3.1.1) and (1.3.1.2) we have §Djt9~! = 0. Then oI} (§Djt? 1) =
0, but

q— F(q) 2q—
EDHIY = Dt ™)

I'(q) ; 2q—

_ ‘quZ(l 1 -
r(2q) *"

= FL
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1.3.2 Caputo fractional derivative.

An alternative way to define a fractional derivative of order ¢, originally introduced
by Caputo in the late sixties and adopted by Caputo and Mainardi [13] in the

framework of the theory of Linear Viscoelasticity.

Definition 1.3.2.1 ([20,23]). Let ¢ > Oand m be an integer such that m—1 < ¢ <
m, and X be a Banach space. The Caputo derivative of order q with the lower
limit a for a given function f € L'([a,b], X) is defined by

m—1 (k) > '
:DIf(t) = LD} (f(f)—zf ‘L (f—(l.r). (1.3.6)

k=0

provided the right side is point-wise defined on .J.
It is known that

(i) If f € C™ ([a,b], E), then

1 ) /0 (t — s)™"91 ™) (5)ds. (1.3.7)

Dif(t) = Ton—a)

(i) If f € LP([a,b], E),P > (l—[,tllen (I1f)®(t), k = 1,2,..,m — 1 exists at any

te J,and (I7f)®(a) =0,k =1,2,..,m— 1. So

oDf If(t)) = ¢Df (If(t)) = f(t),a.et € J.
By example (1.3.1.2) , the relation between the two fractional derivatives (1.3.3) and
(1.3.6) is given by
m—1 (k)
LDEf(t) = EDEFTE) + A ) (1.3.8)
Note that
«Df(t) = DI f(t),

if and only if

D¥f(a™) =0,Yk=0,1,..., m — 1. (1.3.9)
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Example 1.3.2.1 (Example 3.1,[20]).

Let ¢ > 0,m = [q], and f(t) = (¢t — a)? for some 3 > 0. Then,

' 0, if Be€{0,12,...,m—1},
oD/ [f(t) = (8 +1)

m(f —a)? 4 ifeNand 8>m,or 3¢ Nand 8>m—1.

If we compare this statement with the corresponding one for Riemann-Liouville
operators (Example 1.3.1.2) to get the two operators have different kernels, and that
the domain of the two operators are also different

When it comes to the composition of Riemann-Liouville integrals and Caputo
differential operators, we find that the Caputo is also a left inverse of the Riemann-

Liouville integral.
Theorem 1.3.2.1 (Lemma 2.21, [33]). Let ¢ > 0 and f € L*[a,b], then

(L:D;](u[qu(f)) = f(f) Vt € [(I/. b]

Proof.
Let m = [¢|. By Theorem (1.3.1.4), we have

GIEfE)® = 1% f@t), VE=0,1,...,m — 1.
From Holder inequality we get

4 i — gyt s)| ds
m”'/ (t—s) |f(s)|d:

JIES)| <

1 N A
< Ml 17— / (t — s)7*ds
1 (t—s)*
@—k q-k '
1 (t—a)r*

< flle

s0, J3*f(t) =0 for k=0,1,..., m — 1.
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Thus in view of (1.3.7) and (1.3.9) with the property of 2 D{ that is a left inverse
of 17
sDiGL f)= oD} Iif =f.
Once a gain, we find that the Caputo derivative is not the right inverse of the

Riemann-Liouville integral. m

Lemma 1.3.2.1 (Th 3.3.8, [20]) Assume that n > 0, m = [n] and f € AC™ [a,b].

Then
m—1 (k)
q/c 1M D f a :
LIEDIF @) = £ - P o
k=0 '
Proof.

By Definition (1.3.2.1); we have

JDif () = oI GDf (1))

Thus, applying the operator , I to both sides of this equation and using the semi-

group property of fractional integration, we obtain
q q — q m—qgsc m g — myec m g
oD f () = off " G f (1) = oI GDYf (1))
By the classical version of Taylor’s theorem, we have that

m—1 (k) 7
16y =2 WG oy Dy ).

k!
k=0

Combinig these two equations we derive the claim. m

1.4 Semigroups of Linear Operators.

The theory of strongly continuous semigroup of linear operators on Banach space,
operator semigroup, for short, has becomes an indispensable tool in a great number

of areas of modern mathematical analysis. It started in the first half of this century,
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acquired its core in 1948 with the Hille-Yosida generating Theorem. However, in
general semigroups can be used to solve a large class of problems, for instance, they
are usually described by an initial value problem (IVP). In this section we collect

the basic notions and facts of strongly semigroups and special class of it.

1.4.1  Uniformly continuous semigroups of bounded linear operators.

Let X be a Banach space and £(X) be the set of all linear bounded operators from

X into X. Endowed with the norm ||-|| -, defined by
10l g0y = sup U],
[zll<1
in £(X).
Definition 1.4.1.1 (Definition 2.1.1,[41]). A one parameter family {U(¢),¢ > 0} in
£(X), is called a “semigroup of bounded linear operators” on X or simply
semigroup if it satisfies the functional equation

U() =1, (I is the identity operator X)
(1.4.1)
U(t+s)=U(t)U(s), Vt,s > 0 (the semigroup property).

If in addition, it satisfies the continuity condition at t =0 ,
lim ||{U(t) — I|| pixy = 0,
i 1U(8) — Tl s
the semigroup is called “uniformly continuous”.

Definition 1.4.1.2 (Definition 1.1.1.[39]). The linear operator A defined by

,7 P 1Y o / .‘, T
Az = limL (e —a = dU(t)x

e : = for x € D(A),

t=0

is called the infinitesimal generator of the semigroup U(t), where D(A) is the domain

of A given by the formula

)z —
D(A) = {1 eX: limL (exists} .
t10 5
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Remark 1.4.1.1 (Remark 2.1.1,[41]).

1. If A is the infinitesimal generator of the semigroup of linear operators then

D (A) is a vector subspace of X and A is a possibly unbounded linear operator.

2. For A € £(X) let

NP Vi
(”"‘:Z( ).f€R+.

n!
n=0

where the convergence of this series takes place in the Banach algebra £(X),

thus e'4 is a well defined bounded operator on X.

Theorem 1.4.1.1 (Th 1.3, [39]). Let U(t) and S(¢) be uniformly continuous semi-

groups of bounded linear operators. If

U(t) -1 S(t) —
limL = A =lim———,
10 t t10 t

then U(t) = S(t) for t > 0.

Proof.
We will show that given U > 0, S(¢t) = U(t) for 0 < t < U. Let U > 0
be fixed, since t — ||U(t)|| and ¢ — ||S(¢)| are continuous there is a constant

C such that |

UBD|NSG)| < C for 0 < s,t < U. Given ¢ > 0 it follows from

UO-1 _ A — lim2®W=L that there is a 6 > 0 such that

lim :

tlo ! 10

KU (R) — S(h)|| < % for 0 < h < .

Let 0 <t < U and choose n > 1 such that ﬁ < . From the semigroup property and

last equation it then follows that

o (nt) -5 (nt)]

U(t) - S = ‘

c So(w-o8)s(E)-r(o-s-n2)s(#52)
< (el ()OI sovit -

k=0
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Since € > 0 was arbitrary U(¢) = S(t) for 0 < t < U and the proof is complete. m

Corollary 1.4.1.1 (Cor 2.1.1, Proposition 2.1.1, [41], Cor.1.4, [39]). For A € £(X),
Let U(t) be an uniformly continuous semigroup of bounded linear operators.

Then the following properties hold.
1. For all ¢t > 0, U(t) is invertible,

2. The mapping ¢t — U(t) is continuous from [0, 00) to £(X) endowed with the

operator norm,

3. There exists a constant w > 0 such that ||[U(¢)]| < et,

t

4. There exists a unique bounded linear operator A such that U(#) = e, where

the operator A is the infinitesimal generator of U (t),

5. The mapping ¢t — U(t) is differentiable in norm and satisfies the differential
equation
1 U (i .
% — AU(t) = U(t)A.
C

Proof. 1. Inasmuch as
imU(t) — I =
111}(1}(, t)y—I1=0,

in the norm topology of £(X), there exists § > 0 such that

Ut) — Il gx) < 1

for each ¢t € (0,0]. Thus, for each t € (0,6], U(t) is invertible. Let ¢ > 4.
Then there exist n € N* and n € [0,d) such that ¢ = nd + 1. Therefore

U(t) =U()"U(n), and so U(t) is invertible. The proof is complete.

2. Let {G(t);t € R} be the uniformly continuous group of linear operators

which extends {U(t);¢ > 0} and let ¢ > 0. Then

IG(h) - 1l,, =0

£(X) £(X)

lim [[U(t +h) = U@, < lim U]

£(X
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As at t = 0 the continuity follows from Definition (1.4.1.1), this achieves the

proof.
The last three properties follow easily from the fourth one.

To prove (4) note that the infinitesimal generator of U(¢) is a bounded linear

operator A. A is also the infinitesimal generator of ¢4 defined by U (t) = ¢ =
o0

b —(","‘,) and therefore, by Theorem (1.4.1.1), U(t) = ¢'. m

n=0 '

1.4.2 Strongly continuous semigroup of bounded linear operators.

Definition 1.4.2.1 (Definition 2.3.1,[41]). A family {U(¢),t > 0} of bounded
linear operators on X, is called a strongly continuous (one-parameter) semi-
group or semigroup of class Cy or * Cy-semigroup’ if it satisfies the functional
equation (1.4.1) and is strongly continuous in the following sense

lril%lU (H)x =2 for every x € X. (1.4.2)
Finally, if these properties hold for R instead of R*, we call {U(t),t € R} a
strongly continuous (one-parameter) group or ( Cy-semigroup) on X.

Example 1.4.2.1 (Example 2.3.1,[41]).

Let X be the Banach space of bounded uniformly continuous functions on R with

the supremum norm. For f € X we define the left translation semigroup

(U @) f)(s)=f(+s).
It is easy to check that U(t) is a Cy- semigroup satisfying ||U(t)|| < 1 for ¢ > 0.
The infinitesimal generator of U(t) is defined on D (A) = {f : f € X, f’ exists,

f'e X } and

(Af)(s) = lim
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for f € D(A).

Remark 1.4.2.1 (Remark 2.3.2, Theorem 2.4.2,[41]).

1. Each uniformly continuous group is of class (. The converse is not true in
\ )

general as we can state from the Example (1.4.2.1), and take for all t > 0,

t
. i—al Efcrss
.f(T): t / s
0, if > —.
1 T 2

2. The Theorem (1.4.1.1) is true even on a Cy- semigroup.

3. We repeat that for a strongly continuous semigroup {U(t),t > 0} the finite
orbits {U(t),t € [0,%0]} are continuous images of a compact interval, hence
compact and therefore bounded for all z € X. So by the uniform boundedness
principles each strongly continuous semigroup is uniformly bounded on each

compact interval, a fact that implies exponential boundedness on R*.

Theorem 1.4.2.1 (Theorem2.3.1, [41]). Let U(¢) be a Cy- semigroup. Then

there exists constants w € R and M > 1 such that ||[U(t)|| < Me*!,V ¢t > 0.

Proof.

First we show that |

U(t)|| is bounded on 0 < t < 7 for some 7 > 0. If not then

there exist {¢,} such that ¢, | 0 and

U(t,)|| = n. From the principle of uniform

boundedness there must exist a z € X such that ||U(t,)z|| is unbounded. But this
contradicts the strong continuity at ¢ = 0. Thus there exists n and M such that

IU(t)]| < M for 0 <t <. Also since

|[U(0)|| =1 we must have M > 1.

In

Let w = % Given any ¢ > 0 there exists n € Z and 6 with 0 < § < 7 so that

t = nn + 0. Then by the semigroup property we have

U@ = IU@Um"|| < M.
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Now t = nn + ¢ implies

and since M > 1 we have
U@ < MM™ < MM?.

o s oo M
Now w = -

implies In M = nw which implies M = ¢*". Thus we have

U@ < MM* < M(e*")7 < Me*t.

Definition 1.4.2.2 (Definition 2.3.2,[41]). A Cy- semigroup {U(t),t > 0} is called

of type (M,w) with M > 1 and w € R, if for each ¢ > 0, we have

U)oy < Me**.

Moreover a semigroup is called bounded if we can take w = 0 and contractions,
or of nonexpansive operators, if it is of type (1,0), i.e., if for each ¢t > 0, we
have

NI gxy < 1.

The number

wo(U) =inf {w e R: IM(w) > 1, |

U(t)|| < Me**,t > 0},
is called the growth bounded of U.

Definition 1.4.2.3 (Definition 2.4.1,[41]). An operator A : D(A) € X — X is
closed in X x X, that is, for all z,, € D(A), z, — x and Az, — y in X, then

x € D(A) and Az = y.
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Corollary 1.4.2.1 (Cor 1.2.5, [39]). If A is the infinitesimal generator of a Cp-
semigroup U(t) then the domain of A is dense in X and A is a closed linear

operator.

Proof.
For every z € X set

o
oy =— / U(s)x ds.
t Jo

We know that for x € X, f() U(s)xds € D(A) and A (f J(s)x ds) =U(t)z — z. So
x; € D(A) for every t > 0. Also we have For 2z € X, 11111— jz V& ds = U ().
Then x, — x as t | 0. Thus D(A), the closure of D(A). equals X. The linearity of A
is evident. To prove its closedness let z, € D(A), x, — = and Az, — y as n — oc.
We have

Ult)r, — x, = /0 U(s)Ax, ds.
We have that U(s) for s € [0,¢] is uniformly bounded for any fixed ¢ > 0 which
implies

U(s)Az, — U(s)y  uniformly for s € [0,].

Namely we have

U(s)Az, — U(s

—y| "=

uniformly in s in a compact set. This implies that the right hand side in U(t)z, —z, =

f(: U(s)Ax,ds converges to fol U(s)yds. Also the limit on the left exists and we have

Ult)r —z = /f U(s)y ds

0

which implies

I(t)z—z 1
M— /U( )y ds.

Then the limit on the right exists and goes to y. Thus we see that € D(A) and

Az =y. m
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1.4.3 Some special class of Cj-semigroup.

Definition 1.4.3.1 (Definition 6.2.1,[41]). A Cy-semigroup {U(t),t > 0} is called

I8t
compact if for all ¢ > 0, U(t) is compact operator and eventually compact if

there exists £, > 0, such that U(ty) is compact.

Theorem 1.4.3.1 (Th 2.3.2, [39]. Let U(t) be a Cy-semigroup. If U(¢) is compact
for t > tg, then U(t) is continuous in the uniform operator topology for ¢ > ;.

Proof.

Let [U(s)|| < M for 0 < s < 1 and let € > 0 be given. If ¢ > t, then the set
U, = {T(t)x: ||z|| <1} is compact and therefore, there exist x1, xs, ..., 2y such that
centered at U(t)z;, 1 < j < N cover U;. From the

the open balls with radius 577
strong continuity of U (%) it is clear that there exists an 0 < ho < 1 such that
for 0<h<hy and 1< j<N.

Ut + h)x; — U(t)z;|| < —
Let x € X, ||z|| < 1, then there is an index j, 1 < j < N ( j depending on z ) such

c

W0)z - U5l < 537y

that

Thus, for 0 < h < hy and ||z|| < 1, we have
ITMIU @)z — U@yl + U+ h)z; — Ut

<

U@+ h)x — U(t)x||
+ |U@)z; — U@)z||

< &
which proves the continuity of U(#) in the uniform operator topology for t > t,. m

Differential Inclusions.

1.5
Differential inclusions serve as models for many dynamical systems. Obviously, any

process described by an ordinary differential equation 2’(¢) = f(x) can be described
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by a differential inclusion with right-hand side F'(x) = {f(x)}. Moreover, differential
inclusions play a crucial role in the theory of differential equations with a discon-
tinuous right-hand side. The investigation of such equations is of great importance
since they model the performance of various mechanical and electrical devices as
well as the behavior of automatic control system.

Differential inclusion takes the form

'(t) € F(t,z(t)) a.e.on J=[0,b] CR,

z(0) = z4.

(1.5.1)

Where F'is a set-valued map from .J x D to the nonempty subsets of a real Banach
space X, D C X is closed and ¢ € D. We have first to agree on what we shall call
a solution to such differential inclusion. In the case of differential equations, there is

no ambiguity since the derivative z/(-) of a solution z(-) to the differential equation

&'(t) = ft,=(t))

inherits the regularity properties of the map f and of the function z(-). This is
no longer in the case with differential inclusions and is one of the reasons why
their study brings more difficulties than that of the ordinary differential equations.
Solutions to differential inclusion (1.5.1) are understood in the Carathéodory sense,

i.e., absolutely continuous functions verifying (1.5.1) almost everywhere. For some

works done all differential with initial condition or nonlocal conditions we refer to

3,4,7,9,10,32].
Example 1.5.1 (Ezample 2.5.1, [19]).

Let
F:R — P(R)\{¢}
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be defined by
{-1} ifz>0
F(z)=4 {-1,1} ifz=0
{1} ifx <0
notice that F is w.s.c., with compact values (not convex) and there is no solution
to the differential inclusion
2'(t) € F(z(t)) a.e. on J = [0,00)
z(0) = 0.
If we convexity, i.e.
F(0) =[-1,1],
then the zero function is the unique solution for (x) which is continuously differen-

tiable. If we change (%) to

Z'(t) € F(z(t)) a.e.on J = [0,00)

then the function defined by

z(t) = (1 — t)xpo,1(t); t € [0,00)
is a solution for (#x) which is not continuously differentiable at ¢ = 1.
Also, it is important to introduce an other kind of differential inclusions which
is differential inclusion with a nonlocal condition that takes the form
x'(t) € F(t,z(t)) a.e.on J=[0,b],

z(0) = g(x),

where F' is a set—valued map defined from J x X to the family of all nonempty

(1.5.2)

subsets of a Banach space X and ¢ is a function from the space of all continuous
functions from .J into the space X. The study of existence of solutions for differential
inclusions with non-local conditions was motivated by physical problems (see [6,22]).
Moreover, it is a generalization for the classical differential inclusions with local

conditions (1.5.1).
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1.6 Functional Differential Inclusions.

Differential inclusions express that at every instant the velocity of the system
depends upon its state at this instant. Differential inclusions with memory, or,
as they are also called, functional differential inclusions, express that the velocity
depends not only on the system at this instant, but depends upon the history of the
trajectory until this instant. In what follows, we will denote by C'(J, X') the space

of continuous mappings u : J — X equipped with the norm of uniform convergence;
lullcesx) = sup [lu(®)]| -
ted

To formalize this concept, we give the following definition.

Definition 1.6.1 (Page 204,[4]). Differential inclusion with memory or ‘infinite
delay’ describes the dependence of the velocity x'(t) upon the history 7(t)x of x(-) up
to time t through a set-valued map F from a subset Q@ C R x C'((—oc,0], X) to X,

where the function 7(t)z : C ((—oo,t], X) — C((—o0,0], X) is defined by:
(t(t)z)(s) = z(t + s), Vs € (—oc,0], Vz € C ((—o0,t], X).

Solving a functional differential inclusion is the problem of finding an absolutely

continuous function z(-) € C ((—o0, b], X) satisfying
Z'(t) € F(t,7(t)z); a.e. on J = [0, ).

In this regard , Ibrahim and Reem in [3] proved the existence of mild solution of
a semilinear functional differential inclusion of a first order with finite delay in the

case when the kernel is not necessarily compact given by the formula

() z'(t) € At)z(t) + F(t,7(t)x) a.e. on J,

v

z(t) = ¥(t) — g(x), vt € [—r,0],
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where ¥ € Cy. Here J = [0,b], Co = C([—7,0], E) , {A(t) : t € J} is the family
of densely defined, linear operators on the Banach space E, which generates an
evolution operator 7" : A = {(t,s) € J x J:0< s <t < b} — L(FE) (the space
of bounded linear operators from E into itself), F' : J x Cy — P.(F) and for any
t € J, 7(t) is the mapping from C([—7,b|, F) to Cy defined by 7(t)u(s) = u(s +t),
for all s € [—r,0] and u € C([—r,b], E).

Differential inclusions of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering.
Indeed we can find numerous applications in viscoelasticity, electrochemistry, elec-
tromagnetism, and so forth. Functional differential inclusions with fractional order
are first considered by El Sayed and Ibrahim [21]. Very recently Agarwal [1] have
considered some class of initial value problems for fractional semilinear functional
differential equations and inclusions with both cases of finite and infinite delay.

In [25] Henderson and Ouahab, used the Filippov’s Theorem to prove an existence
result, for the following initial value problem or (Cauchy problem) of fractional

differential inclusion with finite delay in finite dimensional Banach space R,

Dlz(t) € F(t,7(t)x) a.e.Vte J, (16.1)
z(t) = ¥ (), vt € [—r,0],

where 0 < ¢ < 1 and ¥ € C([—r,0],R), ¥(0) = 0. Here J = [0,5], A =0,
F:JxC([-r0],R) - P(R)\ {¢},

and “D?z(t) is the Riemann-Liouville fractional derivative of order ¢ to the function
x at the point t.
Indeed Henderson and Ouahab [25] proved the following local existence result of

(1.6.1).

Theorem 1.6.1 (Th 5.2, [25]). Suppose the following hypotheses are satisfied,
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[Ai] F : Jx C([-r,0,,R) — Pr(R) is a multifunction such that, for all z € Cj,

t — F'(t, x) is measurable.
[A;] There exists a function p € L'(J,R") such that, for all 2,y € Cj
H(F(t,z), F(t,y)) < p() Iz — yllo_ror) a6 t € J.

d(0, F(¢t,0)) < p(t),Va.e. t € J, |oJip| < 00.

If

1 q, .
W511p{|()JL1)(t)| it EJ) €1,

then the Cauchy problem (1.6.1) has at least one solution on C'([—r, b], R).

A global existence result of (1.6.1) on unbounded interval [0, 00) is proved in the

following theorem,
Theorem 1.6.2 (Theorem5.5,[25]). Suppose the following hypotheses are satisfied,

[A1]> F :[0,00)xCy — Pi(FE) is a multifunction is an upper Carathéodory map, that
is for every x € C([—r,0],R),t — F(t,x) is measurable, for almost t € [0, o),

x — F(t,x) is upper semicontinuous.
[A2]*® There exists a functions p, ¢ € C ([0, 00) , R") such that for all u € C([—r,0],R)
1Bt )l pgey = sup (1ol : v € F(t,u)} < p(t) + (1) [uO)]
for t € [0,00) and u € C([-r,0],R).
[A3]> For all R > 0, there exists [g € L}, .([0,00),R") such that

H(F(t,z), F(t,y)) < &) Iz — yllo(_ror) Y2y € C([-7,0],R) and ||z||, [lyll < R,

and

d(0, F(t,0)) < [g(t),Va.e. t € [0,00), |oJ{Ir| < 00.
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F((]) I 0“¢ 'R

then the (IVP), (1.6.1) has a global solution on [—r, 00).

The compactness of the set of solutions of (1.6.1) is established in the following

theorem.

Theorem 1.6.3 (7Th 6.3, [25]). Assume that the conditions of Theorem (1.6.1) are
satisfied such that the function p € C(J,R") and F : J x C([-r,0],R) — Px(R).

Then the solution set of the problem (1.6.1) is compact subset of C([—r,b],R) and
Sy : C([-r,0],R) —» P(C([—r,b],R))
1s Hausdorff continuous.

In infinite dimensional Banach space more generally than (1.6.1), Agarwal [1]
proved the existence of mild solutions of a semilinear functional fractional differential

inclusion with finite delay in the case when the kernel is compact given by the formula

LDx(t) € A(t)x(t) + F(t,7(t)z) a.eVte J,
z(t) = ¥(t), vt € [-r,0],

(1.6.2)

where “D{ is the standard Riemann-Liouville fractional derivative. F : J x Cy —
P(FE) is a multivalued function. P(E) is the family of all nonempty subsets of E.
A:D(A) C E — E is a densely defined ( possibly unbounded ) operator generating
a strongly continuous semigroup {7°(¢),t > 0} of bounded linear operators from E
into £. ¥ : [—r,0] — FE is a given continuous function such that ¥(0) = 0 and
(E,|.]) is a real separable Banach space.

In the following theorem the existence of solutions of (1.6.2) with a convex valued

right-hand side is proved.
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Theorem 1.6.4 (Theoremb.2, [1]). Assume the following .
[H,] F:Jx Cy— Pu(E) is Carathéodory.
[Hy] The semigroup {7'(t)},., is compact for ¢ > 0.

[H3] There exists a functions p,q € C' (J,R") such that

I

F(t,u)|lpsy < p@) +q(t) |lullg , for ae.,t € J, and each u € C([-r,0], E).
Then the problem (1.6.2) has at least one mild solution on ©.

1.7 Some Important Facts

In this section we present some important fact that we will need later.

1.7.1. Holder’s Inequality. Let X be a Banach space, (S, 0, ;) be a measurable
space, E € S and p,q € (1,00) such that % + % =1.1If f € LY(E,X) and

g € LP(E, X), then fg € L'(E, X) and

/' 1/ @) g (@)l dyx < / 1 @)IIP dpe / lg(6)]1° dy
‘E ‘E ‘E

1.7.2. Young’s Inequality. Let X be a Banach space, £ = [a,b], k € L'(E,R)
and f € L?(E, X) for some p € [1,00), then k x f € LP(E, X) and
|k * f”,, e ||A’”/,1(1«:.R) ||f”l,P(I~Z..\') ’

where k * f is the convolution of & and f, which is defined by

(b% f) )= /’A'(t — s)f(s)ds.

a
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1.7.3. Fatou’s Lemma. Let (f,) be a sequence of non-negative measurable func-
tions on the measurable space (S, o, 1) and let f(¢) = lim f,(¢) a.e. Then f is
n—oo

measurable and
/f(f)(l/l = liminf/f,,(f)(l/l.
s s

Corollary 1.7.1 Let (f,) be a sequence of real-valued measurable functions on the
measurable space (S, o, ). If there is an integrable function g such that f, < g, a.e.

for alln > 1, then

n—oc n—0o0

lim 811[)/f,,(t)(1/z < /lim sup fr (t)dpu.
s ‘s

Take z, = g — f, and apply Fatou’s Lemma.
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CHAPTER 2

CONTINUOUS SELECTIONS OF
SOLUTION SETS OF SEMILINEAR
DIFFERENTIAL INCLUSIONS OF

FRACTIONAL ORDER.




ISSN: 2663-5798 || Arab Journal for Scientific Publishing

It

BB

et § S 230 — pl) sy
72024 — sl — 2 1 syl g 5

WWW.ajsp.net

O, ) S g eiee e s 10 .

2.1 Introduction.

Let ¢ € (0,1], b be a positive real number, J = [0,b], FE be a separable real
Banach space, C' (J, E) be the Banach space of E-valued continuous functions on
J with the uniform norm ||z|| = sup {||z(¢)||, t € [-7,0]}, F : J x E — P, (FE) and
A : D(A) C F — FE be the infinitesimal generator of a Cy-semigroup of bounded
linear operator {7T'(t) : ¢ > 0} in E. Consider the following fractional functional

semilinear differential inclusion:

Dix(t) € Azx(t) + F(t,xz(t)), ae.te J,
() (2.1.1)
z(0) = ¢,
where ( is a given element in E.
It is known that a solution of (2.1.1) is a continuous function z, : J — E such

that:

xe(t) = Ki(t)¢ + /O‘f(t —8)T 1Ky (t — s5)f(s)ds, teJ, (2.1.2)

where
f € Sr(.rQ)x) s SF(r0)) ={f €L (J,E): f(t) e F(t,7(t)z),ae. t € J},
Ki(t) = [y £,(0)T(t19)d0,
Ky(t)=q [~ 08,(0)T'(t10)do,
£,(0) = o7 iwg (074) > 0,
@y (0) = 13 (—1)"' o~ LD iy (), 0 € (0, 00) , and [ £,(6)d6 = 1.
Let S, = {1'::7:]1‘( a solution for (F;)}.
It is known that, under appropriate assumptions that for any ¢ € I, the set
S¢ is not empty. In this chapter we prove that the multivalued function ¢ — S¢ has
a continuous selection, that is, there is a continuous function u : E — C(.J, E) such
that u(¢) € S¢.
We would like to refer that Cernea [15] showed, in finite dimensional spaces,

the existence of continnons selections for a fractional differential inclusion (2,1,1) of
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order ¢ € (1,2) and when A = 0. So, our technique allows to extend the result of

Cernea [15] to infinite dimensional spaces.

2.2 Preliminaries And Notations.

Let L' (J,E) be the space of E—valued Bochner integrable functions on .J with
the norm |||l 15 = /b |f(®)] dt, P(E) = {B € E : B is nonempty and
bounded}, Py (E) = {B C 0E : B is nonempty and closed}, Py(E) ={B C FE: B
is nonempty and compact}, P..(E) = {B C E : B is nonempty, closed and
convex} , Pyi(E) = {B C E : B is nonempty, convex and compact}, conv(B)
( respectively, conv () ) be the convex hull (respectively, convex closed hull in £
of a subset B.

‘We need the following Lemmas:

Lemma 2.2.1 (/32/, Theorem 8.2.8). Let (2, A.ju) be a complete o— finite measure
space, X a complete separable metric space and F : Q — 2% \{¢} be a measurable
multivalued function with nonempty closed images. Consider a multivalued function
G from: Q x X to P(Y'), Y is a complete separable metric space such that for every
x € X the multivalued function w — G(w,z) is measurable and for every w € €)

the multivalued function x — G(w, x) is continuous. Then the multivalued function
w — m is measurable. In particular for every measurable single-valued
function z : Q — X, the multivalued function w — G(w, z(w)) is measurable and for
every Caratheodory single-valued function ¢ : 2 x X — 'Y, the multivalued function

w — p(w, F(w)) is measurable.
For more about multivalued functions we can see [4,5,12,20,28,29,34].

Lemma 2.2.2 ([12], Lemma 2.3). Let S be a separable metric space and D(J, E)

be the family of all decomposable subsets of L'(J, E). Let F* : J x S — P(E) be a




BB

et § S 230 — pl) sy
72024 — sl — 2 1 syl g 5

WWW.ajsp.net

ISSN: 2663-5798 || Arab Journal for Scientific Publishing

ISV o 5 e ey S Kl OED

closed valued measurable multifunction such that, for any t € J, the multifunction

s — F*(t,s) is l.s.c. Let G: S — D(J, E) be defined by:
G(s)={v e L'(J,E) : v(t) € F*(t,s), a.e.}.

Then the multifunction G s l.s.c. with nonempty closed values if and only if there

exists a continuous mapping p : S — L*(J,R=°) such that:
d(0, F*(t,s)) < p(s)(t) a.e. on J and for all s € S.

Lemma 2.2.3 (/13], Theorem III-}1). Let (T, T') be a measurable space, G : T — 2F
be a measurable closed valued multifunction and g : T — E be a measurable function.

If the multivalued function

U(t) = {x € G(t): lg(t) — =]l = d(g(t), G())},

has a nonempty values, then it is measurable and hence there is a measurable function

z:T — E such that z(t) € U(t), a.e. i.e.

lg(t) — ()| = d(g(), G(#)), a.e.

Lemma 2.2.4 ([12], Lemma 2.4). Let S be a separable metric space and D(J, E)
be the family of all decomposable closed subsets of L*(J, E). Let G : S — D(J, E)
be l.s.c. multifunction with closed decomposable values and let ¢ : S — L'(J, E),
n:S — L'YJ,R") be continuous such that the multifunction H : S — D(J, E)
defined by:

H(s) = cl{v € G(s) : [[v(t) — e(D)]| < n(s)(?), ae.},

has nonempty values.
Then H has a continuous selection, i.e., there exists a continuous mapping

h:S — L'Y(J, E) such that:

h(s) € H(s), VseS.
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Lemma 2.2.5 (/18]). Let (X,d) be a complete metric space. If R : X — Py (X) 1is

contraction, then R has a fized point.

Definition 2.2.1 (/32]). A sequence {f,n € N} C L'(J, E) is said to be semi-

compact if

(i) It is integrably bounded, i.e. there is 3 € L' (J,R") such that
[[fn@®)]] < B(t), for a.e. t € J and for every n € N.
(ii) The set { f.(t) : n € N} is relatively compact in E for a.e. t € J.

We recall one fundamental result which follows from Durford-Petties Theorem.

Lemma 2.2.6 (/32, proposition4.2.1]). Every semicompact sequence in L* (J, E) is

weakly compact in L' (J, E).
The proof of the following theorem is known., and we will recall it.

Theorem 2.2.1 Let F : J x E — P..(F) and A be the infinitesimal generator of
a Cy-semigroup of bounded linear operators {T'(t) : t > 0} in E . Assume that the

following condition are satisfied

[HF,] The multivalued function F : J x E — P.,(F) has the property that for

every x € E, t — F(t,x) is measurable.
[HF,] There exists k € Lz (J,R"), o € (0,q) such that for every z,y € E
H(F (t,z),F(t,y) <k(@) || z—y ||g ae., fort € J,

and
H ({0}, F (t,0)) < k(t) a.e., for t € J.

Then, for any ¢ € E, the problem (F;) has at least one mild solution on
J = [0, b] provided that,

q—0o

L
” H/,‘zlv‘(./.w.Jr) b

M
Tq) 7

< 1, (2.2.1)
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where M is a positive number such that [|7(¢)| ;g < M and n = {=.

Proof.

At first from Lemma (2.2.1), [HF,] and [HF;] we conclude that for every = €
C(J, F) the multivalued function ¢ — F(¢,x(t)) is measurable with closed values,
then by Theorem (1.2.2.1), there is a measurable selection for the multifunction
t — F(t,z(t)) and the set Sp(.,()) is nonempty. In order to transform the problem
(2.1.1) into a fixed point problem, we consider the multifunction N, : C'(J, E) —
2€(1E)\{¢p} which is defined as: y € N¢(z) if and only if

t
y(t) = Ki(t)¢ +/U (t — 8)" " Ky(t — s)f(s)ds, t € J.

We shall show that NV, satisfies the assumptions of Lemma (2.2.5). We divide the
proof into two steps.

First Step. The values of N, are closed.

Let z € C(J,E), {¥n},en € Ne(x) such that y, — y in C(J, E). Then for any

ne
n > 1 there exists f, € Sp(. .()) such that
ot

yn(t) = K1(t)C + /0 (t— .9)"_1]\'2(f — 8)fa(8)ds, t € J.

Since F(t,0) is closed, from [HF3] we conclude that for any n > 1 and for a.e. t € J

Ifa @] < d(0, fa(t))

< H({0}, F(t, z(t)))
= H({0}, F(t,0)) + H(F(t,0), F(t, z(t)))
< k() + E@)||z@)]]

< k@A +lzllewp))-

This show that the set { f,, : n > 1} is integrably bounded. Moreover, since the values
of F are compact, then for almost t € J, the set {f.(¢) : n > 1} is relatively compact

in L'(J, E). Therefore, the set {f,(t) : n > 1} is semicompact and hence, by Lemma
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(2.2.6), it is weekly relatively compact in L'(.J, E'). Then, there exists a subsequence
still denoted { f,,} which converges weakly to a function f € L'(J, E). From Mazur’s

lemma, for every natural number j there is a natural number k¢(j) > j and a
ko

sequence of nonnegative real numbers A, k = ko(j),.....,J such that > A =
k=j
ko
1, and the sequence of convex combinations z; = > A« fi; = 1 converges strongly
k=j

to f in L'(J,E) as j — oo. So, there is a subsequence of (z,), denoted again by
(2n), such that z, — f, a.e. Since F' takes convex and closed values we obtain for

ae. te J

ftye 0 @k =7} © N@{fu: k= j} € F(t,a(t))).

j>1 §>1
Note that, for every t € J, s € (0,t] and every n > 1

It = )" Kt = ) all| < gy It 51" k() (14 i) € L0, 8, RY),

ko(n)
Next taking 7,(f) = > Ank Yx- Then

k=n

ot
7.(t) = Ki(#)¢ + / (t — 8)* ' Ky(t — 8)za(s)ds, t € J.
Jo

Observe that for any t € J, 5, (t) — y(t). and z,(t) — f(t),a.c. Note that, the
continuity of K,(t) implies that for every ¢t € J, Ks(t — s)z,(s) — Ky(t — s) f(s), for
s € (0,t). Therefore, by passing to the limit as n — oo we obtain from the Lebesgue

dominated convergence theorem that
t
y(t) = Ki(t)¢ + / (t — 8)* 1 Ky(t — ) f(s)ds,t € J.
Jo

So, y € N¢(x).

Second step. N, is contraction, that is there exists 1 > p > 0, such that

H (N¢(z1), Ne(z2)) < pllzr — z2|| , V21,22 € C(J, E).
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Let 1,22 € C(J, E) and y; € N¢(x1). Then there exists f; € Sp(. () such that,

ot

n(t) = Ki(6)¢ + / (t — 8)T Ky (t — 8)fi(s)ds, t € J.

JO

Now let U : J — 2F be a multivalued function defined by

U(t) ={x € F(t,z2(t)) : d(z, f1(t)) = d(f1(t), F(t,z2(t))}-

Since the values of F' are compact, then the values of U are nonempty. By applying

Lemma (2.2.3), there is a measurable function f; : J — FE such that
1f1(t) — f2(B)|| = d(fi(2), F (¢, z2(t)) and fo(t) € F(2, z2(1)), a.e.
Note that by [HF;] we get

1) — 20| < H(F( 21(2)), F(t,22(t)))

k(t) |z1(t) — z2(t)|lz, t € J

IA

< k() o1 — 2allogmy > t € T

Let us define
ot

ya(t) = K1 (t)C —I—/ (t — 8)T 1Ky (t — s) fa(s)ds, t € J.

0

Then, for any ¢ € J, we have

M -
yi(t) — < — )| fi(s) — fa(s)||ds
() —g2(t)]] < F(q)./o (t = s)T7 | f1(s) — fa(s)]|ds
& | | [(f ) k(s)d
s | | 4 R 0 Y —-_ (S)as
= T(g) 't lews j, ’
M b 9-9
< ——|lz1 — =2l k —.
o r(q) ” ry 72”( (J,E) || ”L%(J,ii‘) ”1,”

By analogous relation, obtained by interchanging the roles of 7; and -, it follows

that

. ’ M . g ba“
H(N¢(z1), Ne(x2)) < 0] lz1 — 22|l ok 1R ||L%(_]‘z_ e
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Invoking to (2.1.3), the last relation gives us
H(f\‘}(.rl), 1\‘2‘(.7‘2)) < P ”'Tl — 'r2]|C'(J.E) Qs P & 1.

This proves that N is contraction, and thus, by Lemma (2.2.5), N has a fixed point

which is a mild solution of problem (R;). m

2.3 Main Result

In the following theorem, we show that there is a continuous selection for the mul-

tivalued function ¢ — S¢, where S; is the set of solutions of (F%).

Theorem 2.3.1 Let F':JxE — P.(F) and A be the infinitesimal generator of a
Co-semigroup of bounded linear operators {T'(t) : t > 0} in E. We assume that [HF ],
[HF>] and the the Relation (2.1.2) hold. Then, the multivalued function ¢ — S has
a continuous selection. That is there is a continuous function v : E — C (J, E) such

that u(¢) € S¢,V¢ € E..

Proof.
We construct two sequences of continuous functions (u,,), (f,), n = 0,1,2, ... such

that:
(i)
Up: E— C(J,E), f.:E—L'(J,E),

(i)

uo (¢) (t) = K1 (1) ¢,
(iii)
@)@ € F(tu,(€)(t), ae.,
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(iv)
Un+1 (Q) (t) = K1(t)C + /0 (t—8)T 1K (t — 8) fn (€) (s)ds, teJ,
(v)
fa(O)@) —foar Q@I <k@®)B,(), ae, n=>1,

where o (¢) = (M + 1) [I]
and 8,.,(¢) = F" =kl 2 ureyBn (€ n=0,1,2,....

(a)
(vi)
d(fn(C) (), F (£, 7 (t) tn41 (€))) < k(F) Brys (€)-
In order to define fj (¢), let us consider the multifunction:
F; : JxE— Py(E),
Fy (t,¢) = F(t,uo(¢) (),
where uq (¢) is given above.
Let us show that, for any fixed ¢ € J, the multivalued function ¢ — Fg (¢,() is
continuous. Indeed, let t € J be a fixed point. By [HF,] we have:
H(Fy (t,¢,), Fp (£,62)) = H (F(t,uo (<) (1), F (2, u0 (C2) (1))
< k() [luo (¢1) (£) — uo (C2) ()]
= k(t) M||¢; — Gl
So, H (F§ (t,¢,), F§ (t,¢5)) tends to zero, when {; — (, in C(J, E). Hence, for any
t € J, the multivalued function ¢ — Fj (¢,() is continuous and therefore [.s.c.

Now, we define two multivalued functions:
1 > % o
Gy : BE— pEVUE) gnd H,: B — 208
where

Go (€)
Hy(C) = cd{veGyQ):||lv@)| < k()8(C), ae.}.

{veL'(JE):v(t) € F§ (t,(), ae.},
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Our aim is to prove, by using Lemma (2.2.2), that Gy is l.s.c. At first, we show
that the values of Gy are decomposable, let ( € E, v;,v5 € Go(¢) and A be a

Lebesgue measurable subset of .J. Then for any t € J

(35 (t) ’ if t e 44.,
v (t), if teJ\A

(vixa +vaxa) (t) =

Then (v1x4 + v2x4) € Go (€) a.e. Hence, the values of GGy are decomposable.

Note that, from [HF,] for any ¢ € E we have for a.e. t € J,

d(0,Fg(t,€)) < H({0}, F(t,uo(¢)(1))

< H({0},F(,0) + H(F(t,0), F (t,u0(C)(1)))

< k() + k(@) [uo( QO

< k(B[ + Ml

< k(t)8s(0) 23

In order to apply Lemma (2.2.2), we define py : E — L'(J,R=%) by po (¢) (t) =

k(t) B, (¢). We show that pg is continuous. Let (;,(, € E. One obtains

[P0 (€1) = Po (C2)

i / 1o (C1) (8) — po (Ca) (B)]]

i
= /U k(t) [180(¢1) — Bo(Co)|] dt

b
M ¢y = Gl / k(t)dt,

which implies the continuity of py.

Then, from Lemma (2.2.2) and equation (2.3.1) Gy is l.s.c. Moreover, thanks
to [HF;] and [HFy], for any ¢ € E the set Si . () is nonempty . Moreover, if
v, — v in L'(J, E), then there is a subsequence (v,;) such that v,; — v,a.e.. Then
by the closedness of F (¢, uq (¢) (t)), we conclude that the values of Gy is closed.

Next, let us show that the multivalued function H, satisfies the assumptions of

Lemma (2.2.4). So, we show that Hj (¢) is not empty for any ¢ € E. So, let ( € E




ISSN: 2663-5798 || Arab Journal for Scientific Publishing

N MG Y e eistn tnase juy *

‘ o Wkl [HEEN]

-

-Q,AJSP

et § S 230 — pl) sy
72024 — sl — 2 1 syl g 5

WWW.ajsp.net

be a fixed element. Consider the multivalued function Fg defined by:

I (t) = {z € F5(t,€) : lz — 0]l = d (0, F5 (£,€))}-

By Lemma (2.2.3), Fg is measurable with nonempty values. Then, 1"2 has a measur-

able selection, i.e. there is a measurable function v : J — FE such that v(t) € 1"2(1‘._ oy
for any t € J and

()] = (0, F3 (t,0)),

and consequently, by (2.3.1),

lo@)|| < k(t)Bo(C), a.e.

This shows that v € Hy (().
Therefore, from Lemma (2.2.4), Hy has a continuous selection f, : E — L'(J, E)
such that:

fo(Q) € Ho(C),VC € E.

Let us show that, for any ¢ € E, the set

Lo(C) = {v € Go(Q) : [lv(®)]| < k()Bo(C), a-e.},

is closed. Let (v,) be a sequence in Ly(¢) and v, — v in L'(J, E). Since Gy(() is
closed, then v € Gy(¢) . Moreover, v, — v in measure, hence there a subsequence

(vy,.) of (v,) such that v,, — v almost everywhere. Note that

g

[vn, (D] < k()B0(C), a-e.

This implies to [[v(¢)|| < k(t)3¢(¢), a.e. Therefore, v € Lo((). This shows that Lo (()
is closed. Then,

fo(Q) (t) € F§ (¢,0) = F (¢, u0 () (2)) - (2.3.2)

and

1.fo (€) ()] < k(t)Bo (€) , ae. (233
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Now, let us define u; (¢) : E — C(J, E) as:
t
ur (€) () = Ka(t)C + / (t— sy Kt — 5) o (¢) (s)ds, t € J.
0
In order to define f, : E — L'(J, E), let

F! : JxE— Py (E),

FL(4,¢) = F(tu(O) ().

Observe that, for any ¢ € J :

H(F (t,6) Ff (4,¢2) = H(F (tui (1) (1), F (tur () (1))

< k() () () — w0 (G) D5
< KOG - Gl

+ [ = It = ) ()6 — oG () ds]
< K@M G — ol

e [ =9 A6 — AlG) @ dsl. (23.4)

Hence by the continuity of fy, F} (¢,() is continuous and consequently /.s.c. for any
teJ.

Now, we define two multivalued functions
&% B — 9LYNJE) and s B — QLM (J.E)
where

Gi(¢) = {veL(JE):v(t) € F! (t,(), ae.},

Hy(¢) = dfveGi(Q): [lv(t) — fo(Q) B < k(t)B:(C), a.e.},

where 3,(C) = 2L 1Kl 1 i Bo (€)-

As above we can show that the values of (G; are closed and decomposable.
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Note that from [HF;] and (2.3.3), for any ( € F, we get:

A0, F (1,0) < H{O}, F (t,u () (1))
< H{0},F (t,0) + H(F(t,0), F (t,u: (O) (1))
< k() + k() lus () (Bl
< K®L+M [C]

+ / ) 1K (¢ — ) 1o ) (5)]] ds]
< KO+ MK

F(([) 3,(C) /n (t — 8)? " k(s)ds] (2.3.5)

But, by Holder inequality, we have:

" o+ l—0o
s s e
/0 (t—35)" " k(s)ds < (/(, (€ —8) (I.s) “I‘H/a(/]xﬂ

b=
< ——I¥ll,4
n L7 (JRH) '

Thus, the equation (2.3.5) becomes:

M bi—°
({1) ,}] o || ”L”(/F ) 3 (C)]

d (0, Fy (¢,Q)) < k(t)[1 + M ||C|| +

Let p; : E — L'(J,R=°) defined by:

, M b7 y
P (O) (1) = KON + M IS+ Fr =z 1Kl ey AolO))

By the same method used to prove that p, is continuous, we can show that p; is

continuous. Then from Lemma (2.2.2) G, is [.s.c. with nonempty closed values.
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Now, let ¢ € E be fixed. Let us show that H;(() is not empty. At first, note that
from (2.3.2) and Holder’s inequality, for any ¢ € J, we get:
d(fo(C) (@), FY (t,€Q)) < H(Fg (¢.¢),Fy(t,Q))
H (F (t,uo(¢)(2)) , F (¢, u1 (€) (1))

< k() lluo(C)(t) — ur (€) W)l

< k() /0'(1—8)"‘11\'2(1—3)1‘}) (€) (s)ds

< k(t)%do(c) /Ol (t — s) ' k(s)ds

< kO F A0 7 1l e

= k(t)3,(C) (2.3.6)

where () = 2 827 1kl 4 e, Bol©)-

Secondly, let FZ. be a multifunction defined by:

Te(t) ={z € FT(t,Q) : lz — fo(Q)@®)l = d(fo(C) (1), FT (£, ¢))}-
Then by Lemma (2.2.3), I'}(t) is a measurable and hence there is a measurable

function v : J — FE such that v(t) € l—‘é (t), Vt € J. This implies to

lv(®) — fo(C) (Dl = d(fo(O) (), FT (2, C))-

This equation with (2.3.6) give us:

[o(t) = fo(Q @) < k(t)5,1(C), a-e.
and v € G1 (€). Thus v € H; (().
From Lemma (2.2.4), H; has a continuous selection f; : E — L'(J, F) such that:

hiic) € H; (C) V¢ & B.

By arguing as above, we can show that the closedness of GGy (¢) implies that the
set

Li(Q)={veGi () :||lv®) — fo (O ®| < k(®)B:((), a.e.}.
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is closed. Hence,
f1(€) (t) € FY (£,¢) = F (t,us (¢) (1)) ,
and
11 () (8) — fo (O) (D]l < k(8)B1(C) , a-e. (2.3.7)
Suppose that we have constructed wug, %1, ..., Up, ..., fo, f1, -y [, .- satisfying (1)—(vi).
Let us define u,. : E — C(J, F) as

Un+1 (Q) (t) = K1(t)C +/ (t—8) 1K (t — 8)fn (€) (8)ds, tE J,

and hence define:
* .
Fn+1 -

*
II'

(¢,

0

Jx E — Py (E), by:

Q) = F (t, uns1(C) (1)),

Gn+1 Ly —» 2L1(J.E)-, b?/

G'n+1 (C):{Z'GLI(’]E) ( )EET+1 t C a.e. }
and
H, .,:FE— 2L‘I("‘E), by -
Hqul (C) =cl {” = C;n+l (C) : ||I'(f) - ju || < ]‘ ) n+l (l'()"} ’
where 8,,.1(C) = figya== 1kl 2 gy Bn (€) ;0 2 0.
Let us show that for any t € J, t — F_, (¢,() is continuous. So, let {,,(, € E.

By [HF5], we have:

H (Fyyq (6:€1) 5 Fryy (8,€2))

H (F (t, tuns1 (1) () 5 F (8, ung1 (C2) (1))

< k(@) lunsr (€1) (2) — vns1 ($2) @Dl 5
S k (i)A ([ - S)q & ”[\—2(1 - S)H ||fn(<])(") - fn Cz ” ds
< k@) [M][¢ —Call

M [t v 3 i
m/() (f_'“) an((,l)() fn(QQ ( )“ (15]
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Hence by the continuity of f,,, we infer that the multivalued function t — F}; , (%,()
is continuous and therefore [.s.c.

Moreover, from [HF;| for any ¢ € E we get:

d(0,Fy (t,0) < HHO},F (t,unsa (O) (1))

< H{0},F(1,0)) + H (F(t,0), F (t,t11 (O) (£)))
< k() + k() |tuns1 () @)l 5
< kB[ +MIC]
oo /( — ) [1£2 (€) (5)]] ds]. (238)

Furthermore, from property (v), for any ¢ € .J, one obtains:

£ QDI < 11Fn (©) (8) = far (O B + [[fa-1 (Q) () = fr2 () (D] + -
+ 12 (©) (8) = fo (O) D + | SO @)
< k@B, (C)+ k()81 (C) + ..ccuc + k(t)3, (€) + k(t)B3,(C).

Thus, the equation (2.3.8) becomes:

d(0,F,, (£C)) < k(@)L M||¢||+—Zs,,. ©) / — )" k(s)ds]. (2.3.9)

Note that, by Holder’s inequality, we have:

/< (C—9)" " k(s)ds < (/< (SDLE )lUIIAH
— 8 (s)ds — 8)1-o ds s | I
0 o 0 e ()

l )q o

,71 ,-,-” ||L (JRT) %

IA

Then, by (2.3.9):

40 F (60) < KOW+ M I+ Fpos e Wl e (me )

m=0

S pn—#—l(C)(f)v (2310)

where p,., : E — L'(J,R=%) is defined by:

Pusa (O () = KO+ MG+ 1y (Za,,xo) T TEl 3 gy

m=0




L1 EL

ISSN: 2663-5798 || Arab Journal for Scientific Publishing S ‘::Lm_"',l“ — & J.M}r_!
72024 — sl — 2 1 syl g 5

WWW.ajsp.net

[ e e 0 nsco

Observe that for (,,(, € E we have:
b
||pu+l (Cl) — Pn+1 (C‘Z)“Ll(]E) = / ||[)n+l (Cl) (i) — Pn+1 (CQ) (f)” dt
Jo

b
. /0Av<f>{1+m||cl||—||c2|||

() (el
m=0 m=0

Then from Lemma (2.2.2) and (2.3.10) G, is l.s.c. with nonempty closed values.

M

T

This shows that p,,.1 is continuous.

MKl 2 ya i,

L(lm«)

Moreover, we can show as above that the values of (G, .1 are decomposable.
In order to apply Lemma (2.2.4) we prove that the values of H, 1 are not empty.
So, let ¢ € F be fixed.
For any t € J, by [HF,|, one obtains:
d(fn(€) (1), Fpy1 (6,4)) < H(F; (t,0),Foia (t,6))
= H(F(t un () (#), F(t,unt1 (<) (1))

< E() lln () () = e (O) (D]l

< Avm/ (t = 57 1Ko (¢ — )| 1o (€) (8) = Facs (O) (5)]] ds]
< K)o /(f— Y £ (©) () = far (O) (8)]] ]

< M- /(t )91 k(s)ds

< Az(t)r( )'3,,«) 11K,

= k(t)B,.,(C), (2.3.11)

Now, let F’C”'l be a multivalued function defined on .J by:
L) = {z € Fiu(t,€) : lz = Q@) = d(£2(O)(2), Fria (t,€))}-
Since the values of FF,, are compact, then by Lemma (2.2.3) there is a measurable

function v : J — FE such that v(t) € I’Z’*l (t),Vt e J
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Therefore, by (2.3.11)

Hl‘(f) g fn(C) (f)H = d(fn(() F:T»l(wa))

S l“(f)s"’jn+l (C) a.e.

Then v € Gpi1(€) and ||v(t) — fn(C) @) < k(t)B,41(¢), a.e. Consequently v €
Hpi1 (€) -

From Lemma (2.2.4), H, ., has a continuous selection f,,; : E — L'(J, E) such
that f.+1(¢) € Hni1(¢),V(¢ € E.

By arguing as above, we can show that the closedness of G, (() implies that
the set

Lni1(€) = {v € Gni1(Q), [[v(t) — fn (O) (D)l < K(8)B,(O)}

is closed. Then

fat1(Q) (t) € Fiy (8,€) = F (¢, un+1 (€) (), (2.3.12)
and
| frt1 () () — fa () DI < £()Brs1 (€) - (2.3.13)
Therefore, the functions wug, uy, ....%,, ..., fo, f1s .-y fn ,....are constructed and satis-

fying the properties (i)—(vi).
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Now, from the property (v), for all ¢ € J and for all ( € E we have:

| frs1 (€) () = fu (O) (W) < k(t)B1 ()
M b?
= 'l‘(f)l—\ ((1) ,/]—_” H IlLé(/F'*) ‘311(C)
M b7° - .
= ’l’(f) F(([) / 0— ||A“L 7 (JR+) .‘311—1(4)
M bi—° =l
— k) | oo W2 mn | A0(O
M br° i ‘
— k) | oy laan| 7+ DI (2310
Then
[ fat1 (Q) = fu (Ol 1y < WKl ey (M + 1) [IC] 0™, (2.3.15)
where
M b1°
T T(g)n—~ HA‘HL%(./.R-) '

Since 0 < ¢ < 1, then (2.3.15) implies that for any ( € F, any two natural number

n,m with n < m and any ¢t € J

I fm(C) = Fo(Ollruey < NFmlQ) = frn1(Oll 1y + oo + [ Far1() = FulOll 1
< ||kllprmrsy [0+ 4+ o+ (M + 1) <]
< |lkllprreyd™ T 1+ 6+ 6% + ... + 6™ DM+ 1) ||<|
< |IA'Ilu(.,,md“"“i”(ﬂl + 1) |[<]]

Since 0 < ¢ < 1, then:

11111
m

||}*"||L1(./.R+)(5"H

||f”l )

k= O

1—

fu (C) ||L1(.1.E) -

1) <]l

0,

(2.3.16)
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This implies that for any ¢ € FE, the sequence (f,(¢)) is Cauchy in L' (J, E). So,

there exists a function f : E — L! (J, E) such that:

lim f..(¢) = £ (¢), V(€ E.

n—oo
To prove that f : E — L' (J, E) is continuous, let ¢;, {;, € E and £ > 0, since

fn(¢y) — f(¢y) and f, (¢y) — f({5), there is a natural number N = N ({;,(,) such

that for n > N we have:

1fa (€)= £ €Dy < 5 (2:3.17)
and
1 (G2) = F gy < 5 (2.3.18)

By the continuity of fy, there is § > 0 such that:

[~
C

2.3.19
- (2:3.19)

||C1 - Cz“ <é= ”f\ (Cl) — I (C-z)HLl(.].E) <

Then from (2.3.17), (2.3.18), (2.3.19) we have:

||f (Cl) = (C‘Z)HL‘(JJ‘J) = “f (Cl) — fn (Cl)“l,l(./.l:‘) ¥ ”./.N (Cl) — Iy (C‘Z)“l,l(,]‘[{)

This means that f : E — L' (J, E) is continuous.

Now, let ¢ € E be fixed. From the definition of u,,({), u,4+1 (¢) and (2.3.15) we

get:
luns1 () = un Ol < | (t =) [ K2 (t = )| 1fa () (8) = fu-1(C) (8)]| ds
L3 ’ — g A (5) —~ s)|| ds
< w1 E= 9RO @~ fa (O ()
M o " V1 k(6\ds
L Tt (A1+1)||c||/0 (t— 5)" " k(s)ds
M e
< &M + 1) Il 2= 1Kl ey (2.3.20)

I (q)
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By arguing as in (2.3.16) we can show that u,(() is a Cauchy sequence in C(J, F).
Hence there is u(¢) € C(J, E) such that u,(¢) converges to u(({) in C(J, E).
Let us define v : £ — C(J, F) such that

u(¢) = lim u,(Q).

e}
It follows from the fact that u,({) converges uniformly to «(¢{) in C'(J, E) that
u(C) is continuous.
Next, we prove that

f(Q) () € F(t,u(C)(t)),a-e.
So, let ¢ € E. We have, by [HF,], for a.e.:
QO O, Ftu)®) < HE (tun(©)(®), F (tu(0) (1)
k(#) llun (€) () — u (C) (D)l

k(1) [lua(C) — “(Q”(:(J,E) - (2.3.21)

IA

IA

Because f,,(¢) converges to f(¢) in L'(J, E), then f,(¢) converges in measure to

f(¢) and hence we can find a subsequence f,, (¢) of f,,(¢) such that

.f”k((:) — f(C) (175

Since [[un(¢) — w(Q)llosz — 0. @ n — oo, the last inequality with (2.2.21) gives
us:
fF)@)e F(t,u(C)()), ae. (2.3.22)
Now, let v : E — C(J, F) defined by:
t
V(OO = K+ [ (t= ) Kalt = 9)f (O (5)ds,  te .
0

Let us show that

u(Q)(t) =v(Q)(t), V(€ EF and t € J.
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Let ( € E. Note that for almost ¢ € J,

£ Q@I < H{O0}, F(t, un()(?))
< H({0}, F(t,0)) + H(F(t,0), F(t, un(C)()))
< R + k@) lun (@)l
< K(t) + k@) lun (Ol -

Since u,(¢) converges uniformly to u(¢) in C(J, E), then u,(() is uniformly bounded,

hence we can find an integrable function z. : J — [0, oc) such that

| fa (OO < 2(t), a.e.

Moreover, as above, there is a subsequence ( f,,,(¢)) of f.(¢) such that

fnk(C) — f((:) a.e.

Then, by the Lebesgue dominated convergence theorem we get

lim uy,, (¢)(t) = v(C)(%).

nj—0c

Then
v(Q)(t) = u(C)(t), Vt € Jand C € E.
Thus:
w(©) ()= K@+ [ (¢ =5 Kalt = 5)1 (O (5)ds,
and

u(() € S(¢),V¢ € E.

fort e J,

te J,

This means that v : £ — C(.J, F) is a continuous selection for S and this complete

the proof. m
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CHAPTER 3

CONTINUOUS SELECTIONS OF
SOLUTION SETS OF SEMILINEAR
FUNCTIONAL DIFFERENTIAL

INCLUSIONS OF FRACTIONAL ORDER.




BB

et § S 230 — pl) sy
72024 — sl — 2 1 syl g 5

WWW.ajsp.net

ISSN: 2663-5798 || Arab Journal for Scientific Publishing

el R R S .

3.1 Introduction.

Let ¢ € (0,1], r, b be two positive real numbers, J = [0,b], C, = C ([-r,0],R) be
the Banach space of E-valued continuous functions on [—r, 0] with the uniform norm
lz|| = sup{||z(®)||, t € [-r,0]},Cy = C([-r,b],R), F : J x C, — Py(R) and
A : D(A) € R — Rbe the infinitesimal generator of a Cy-semigroup of bounded
linear operator {7'(t) : t > 0} in R. Consider the following fractional functional

semilinear differential inclusion:

(Py) Dix(t) € Az(t) + F(t,7(t)x)), a.e. t€ J, (3.11)
z(t) = (), t € [-r0],

where DY is the Caputo derivative of order ¢ for the function = at the point ¢ and
is a given element in C,.
It is known that a solution of (3.1.1) is a continuous function wy, : [—r,b] — R

such that:

P(t), te[-r0],
zy(t) = (3.1.2)
Ki(t)(0) + [y (t — s)T 1Kyt — s) f(s)ds, te€J,

where
I € Sr(r) s SF(rye) = {f € LM (L, E) : f(t) € F(t,7(t)z),a.e. t € T},
Ki(t) = ;7 £,(0)T(t10)d6,
Ky(t) = q [° 0€,(6)T(126)d6,
£,(0) = 1677w, (974) 2 0,
w (0) = 2 i (—=1)" "t g1 Hnatl) iy (nrg), 6 € (0,00) , and [° £,(0)do = 1.

™

n=1

Let Sy = {zy : zy a solution for (P,)}.
Ibrahim and Almoulhim [30] proved, in finite dimensional spaces and under

appropriate conditions, that the set Sy is not empty.
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In this chapter, we generalize this result to infinite dimensional spaces. Moreover,
we show, that the multivalued function v — S, has a continuous selection, that is,
there is a continuous function u : R — C} such that u(v)) € Sy.

We would like to refer that in [22]|, Elshahry proved that the existence of con-
tinuous selection for the set of solutions for the functional semilinear differential
inclusion.

Also we would like to refer that Cernea [15] showed, in finite dimensional spaces,
the existence of continuous selections for a fractional differential inclusion (/7 ) of
order ¢ € (1,2) and when A = 0. So, our obtained results extend the work done by

Cerna [15] to the case when there is a delay.

3.2 Preliminaries And Notations.

Let E be a separable real Banach space, L' (J, E) be the Banach space of (equivalence
classes) E—valued Bochner integrable functions on J with the norm || f||, . (JE) =

' |f@®)| dt , P(FE) = {B C E : B is nonempty and bounded}, P,(FE) = {B C
'E? : B is nonempty and closed}, Py (F) = {B € E : B is nonempty and
compact}, Py .(F) = {B C E : B is nonempty, closed and convex} , Py (E) =
{B C F : B is nonempty, convex and compact}, conv(B)(respectively, conv (B) ) be
the convex hull (respectively, convex closed hull in E) of a subset B.

Ibrahim and Almoulhim [30] proved , in finite dimensional spaces, the existence

of solutions for (P,) . Indeed, they proved the following theorem:

Theorem 3.2.1 Let E = R" and H be the Hausdorff distance on P,(E). If the

following conditions hold

[HA] A : D(A) € F — R is the infinitesimal generator of a Cpy-semigroup of

bounded linear operator {7'(t) : t > 0} in E.
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[HF3;] The multivalued function F : J x C, — P.4(FE) has the property that for

every x € C,, t — F(t,x) is measurable.
[HF,] There exists k € Lz(J,R*), o € (0,¢q) such that for every o, € C,
H(F (t,o),F(t,¥) <k@®) | ¢—17|c, ae., forteJ,

and

d (0, F (t,0)) < k(t) a.e., fort € J.
[H,] g:C, — E is a function such that there is a positive constant ¢ with
I 9(z) —g(@)Il << llz—-wlle, , Vz,w € G,

Then, the problem:

°Dix(t) € Az(t) + F(t,7(t)x), a.e., t€ J,

(Ry)
z(t) = ¢ (t) — g(x), vVt € [-r,0],

has at least one mild solution on [—r, b] provided that,

k
el e

=T,
['(q) '/1*")

M (( —+

where || T'(¢)|| ;gn gny < M for some M > 0 and n = {=Z.

3.3 Main Results.

Our first aim is to extend Theorem (3.2.1) to infinite dimensional real separable

Banach spaces.

Theorem 3.3.1 Let F': J x C, — P4(FE) and A be the infinitesimal generator of
a Cy-semigroup of bounded linear operators {T'(t) : t > 0} in E. Assume that the

conditions [HF3], [H,] and the following condition are satisfied:
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[HF5] There exists k € Lz (J,R"), o € (0, q) such that for every ¢,, o, € C,
H(F (t,,),F (t,05) < k@) || v2— ¢2 llc, a-e., for t € J,
and
H ({0}, F (t,0)) < k(t) a.e., for t € J.

Then, for any ¢» € C, , the problem (R;) has at least one mild solution on

[—r, b] provided that,

Hk“l,%(,l.l*‘) pa—o°
I(g) n'=

M (s + J i, (3.3.1)

where M is a positive number such that [|7°(¢)||zp g < M and n = {=.

Proof.

At first from Lemma (2.2.1), [HF3] and [HF;] we conclude that for every z €
C) the multivalued function ¢ — F(t,7(t)x) is measurable with closed values, then
by Theorem (1.2.2.1), it has a measurable selection, and hence the set Sp(. () is
nonempty. In order to transform the problem (3.1.1) into a fixed point problem, we

consider the multifunction N; : C, — 2%\ {¢} which is defined as: y € N, () if and

only if

Y(t) — g(x), t € [-r,0],
y(t) = 1
Ki(t)(v(0) — g(x)) + fo (t —8)T LKy(t — 8)f(s)ds, t € J.
We shall show that /N,, satisfies the assumptions of Lemma (2.2.5). We divide
the proof into two steps.
First Step. The values of N, are closed.

Let x € Cy, {Yn},en € Ny(x) such that y, — y in C) .Then, for any n > 1 there

exists f, € Sp(. r()x) such that

Y(t) — g(x), t € [-r,0],

Yn(t) =
Ki(t)(¥(0) — g(x)) + f(: (t — )T Ky(t — s) fu(s)ds, t € J.
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Obviously, y(t) = ¥(t) — g(x); t € [—r,0]. Moreover, since F(t,0) is closed, from

[HF 5] we conclude that for any n > 1 and for a.e. t € J

|fnr(t)l — d(()* f‘n (f))

< H({0}, F(t,=(t)))
= H({0}, F(t,0)) + H(F(t,0), F(t,z(t)))
< k() + k(0)[|z(0)]]

< k@O + [lzlle,)-

This show that the set {f, : n > 1} is integrably bounded. Moreover, since the
values of F' are compact, then for almost ¢ € J, the set {f,(t) : n > 1} is relatively
compact in L'(J, E'). Therefore the set { f,,(t) : n > 1} is semicompact and hence it is
weekly relatively compact in L' (J, E). Then, there exists a subsequence, still denoted
{fn}, which converges weakly to a function f € L!(J, E). From Mazur’s lemma, for

every natural number j there is a natural number ky(j) > j and a sequence of

ko
nonnegative real numbers \;x, k = ko(j), ....., j such that > A\;jx = 1, and the
k=j
. . AU g o
sequence of convex combinations z; = > ;. fr; = 1 converges strongly to f
k=3

in L(J, E) as j — oc. Then there is a subsequence of z,, denoted again by z,, such

that z, — f, a.e. Since F' takes convex and closed values we obtain for a.e. t € J

ft) e jgl{z;‘.(f) k> git C Neolfs: k=i CFia()).

j=1

Note that, for every t € J, s € (0,t] and every n > 1

; M o
||(t — 8)* 1Ka(t — 8)fu(s)|| < (o) [t — s|*t k(s) (1 + ||z]|) € L*((0,¢],R").
ko(n)
Next taking 7,(t) = > Ak yx- Then
k=n

P(t) — g(x), t € [-r,0],

ﬁ“(t) — ot
K1(t)((0) — g(x)) + [, (t — s)* 1Ky (t — 8)2,(s)ds, t € J.
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Observe that for any t € J, 7, (t) — y(t) and z,(t) — f(t), a.e. Then, by the
continuity of Ky(t) for every t € J, Ky(t — s)z,(s) — Ky(t — s)f(s), for s € (0,1).
Therefore, by passing to the limit as n — oo we obtain from the Lebesgue dominated
convergence theorem that

Y(t) — g(x), t € [-r,0],
Ki(t)(v(0) — g(x)) + jol (t —8)* LKy (t — s)f(s)ds,t € J.

So, y € Ny(z).

y(t) =

Second step. N, is contraction, that is there exists 1 > p > 0, such that
H (Ny(z1), Ny(z2)) < pllzr — 22|, VE1, Z2 € Cp.
Let z1,z2 € C, and y; € Ny(z1). Then there exists fi € Sp(. r()z) such that,

P(t) — g(x1), t € [—r,0],

yi(t) =
K1(t)(¢(0) — g(x1)) + j(;(f — 8)T Ky (t — 8) fi(s)ds, t € J.

Now let U : J — 2% be a multivalued function defined by
U(t) ={z € F(t,7(t)x2) : d(2, f1(¢)) = d(f1(t), F (¢, T(t)z2) }.

Since the values of F' are compact, then the values of U are nonempty. By applying

Lemma (2.2.3), there is a measurable function f, : J — E such that
| f1(t) — f2(t)|| = d(fi(2), F (¢, 7(t)x2)) and fo(t) € F(t,7(t)x2), a.e.
Note that by [HF5] we get

1) — 2O = d(fi@), F(t, 7(t)z2))
H(F(t,7(t)x1), F(t,7(t)x2))

IA

IN

k(t) |m(t)xr — 7(t)21]l g, , ae. t € J.

Let us define
P(t) — g(x3), t € [-r,0],

ya(t) = g
Kq(t)(¥(0) — g(x2)) + [, (t — 8)I7 L K5(t — s) fa(s)ds, t € J.
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If t € [—r,0], then by [Hy]

[ y1(t) — y2(B)]] < |lg(x1) — g(x2)|] < sl|lzy — 22]|c, -

If t € J, then

M * ; :
[y (8) — 2@ < Mll.{/(-rl)—g(-rz)ller / (t = s)*7 [ f1(s) — fa(s)llds
Jo
< M ¢||lzy — 2| +£ .{(t— N9 k() ||T(8)z1 — T(8)22|| o ds
< M g||lz1 — z2]|c, T J, s :(8) ||[7(s)z1 — 7(8)x2||, ds
1 = “[ X \g—1 5 2
< M g||lz1 — z2||e, + T J, (t — 8)Tk(s)||z1 — 22|, ds
1 t
< o —zalle,M s+ = [ (t—s)""k(s)ds
< o —mallo M s+ g7 [ (€= 5 k(apas )
[|&1

1 q—o
LT (JRF) b1

Llg) =7

< ||l#y — z2||le,M | s+

By analogous relation, obtained by interchanging the roles of ¥, and s, it follows

that
&l 5

Loy A=
H(Ny(z1), Ny(22)) < M (s 2% R ) sy — il
( a»(’l)‘ L(IZ)) — (SJ{— F((]) ,]170-)”'1 ’2||("b

Invoking to (3.3.1)
H(Ny(x1), Ny(z2)) < pllz1 — 22|, ;0 < p <1

This proves that Ny is contraction, and thus, by Lemma (2.2.5), N, has a fixed

point which is a mild solution of problem (R,). m

In the following theorem, we show that there is a continuous selection for the

multivalued function v» — S.

Theorem 3.3.2 Let £ = R, F : J x C, — P,(R) and A be the infinitesimal
generator of a Cy-semigroup of bounded linear operators {T'(t) : t > 0} in E. We

assume that [HF3], [HFs] and the following condition are satisfied:
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[H;}] A[W = 2= 1
where M is a positive number such that || 7'(t)||;p gy < M and n = {=2.

Then, the multivalued function v» — S,, has a continuous selection, that is there is

a continuous function u : C. — C} such that u(v)) € S, V¢ € C,.

Proof.
According to Theorem (2.3.2), for any ¢ € C, the set S, is not empty. We
construct two sequences of continuous functions (u, (1)), (fa (¥0)), n = 0,1,2, ...

such that:
(i)

un (¥) : Cp = C([-r,0],R) = Cp = C([-7,b],R), f.(¥):C,. — L'(J,R),

v (t), te[-r0],
K (t) ¥(0), t €[0,b],

fa (@) (2) € F (8,7 () un (¥)), ace.

‘ W(t), t € [—r0],
Un+1 (V) (£) = "
Ki()¥(0) + [,(t — 8)T ' Ka(t — 8) fu (%) (5)ds, teJ,
(v)
[fn@) @) — facr (@) @) | < k() B, (%), ae, n>1,
where 3, () =1+ (M + 1) ||| and

M b e
I (q)n*°

,"3:1+l ('LS(") . I|A"||L§(J_]_;;+) B ("/“‘) ; B=1,2,...
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(vi)
A () (), F (1,7 (8) g1 () < b (1) B ().
In order to define f; (¢), let us define the multifunction:
F§ : JxC.— Py (R),
Fg(t,v) = F(,7(t)u(¥)),
where ug (1)) is given above.

Let us show that, for any fixed ¢ € J, the multivalued function ¢» — Fj (¢,v) is

continuous. Indeed, let ¢ € J be a fixed point. By [HF;| we have:

H(F5 (t,40) , F3 (642)) = H(F (t,7 (8)uo (), F (.7 (£) uo (1))

< k(8) |17 () wo (vy) — 7 (£) wo (o)l

= k(@) sup [r(€)ug ) (@) —r () ug () (4]
£ k) sup |{ug(h)) (54 0) — (o (%)) (b +0)
< k() g | (o (¥1)) (€) — (o () (€) |

then

H (Fg (t,4,), F§ (t, )

< K] sup [(o (¥1) (€) = (o (4)) (€)]
+ sup | (uo (¥1)) (€) — (uo (¥5)) (€) ]
0<¢<b
< k() [ll¥y — voll + [ K1 (B)]] [, (0) — 42(0)]]

< k() (Il — ¥all + M |1, (0) — 92(0)]] -

2 /y /s 3 3 ZOT ‘he aly aly 1 Y TNCe . ‘ r
So, H (Fy (t,v,), Fy (t,15)) tends to zero, when v, — 1), in C,. Hence, for any
t € J, the multivalued function ¢» — Fj (¢,) is continuous and therefore /.s.c.

Now, we define two multivalued functions:

Gy :C, — 2L'UE) gnd H,: C, — 2L E)
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where

Go(v) = {z’ € L'(J,E) : v(t) € Fy (t,v), a.e.} ;

Hy () = cfveGy): |lv@)| < k(@)By(¥), a.e.}.

Our aim is to prove, by using Lemma (2.2.2), that Gy is l.s.c. At first, we show
that the values of Gy are decomposable, let v € C,, v;,v9 € Gy (¥)) and A be a

Lebesgue measurable subset of J. Then for any t € J

7 (f) ’ if t e ‘4,

v (t), if teJ\A,

(vixa +vaxa) () =

Then (v1x4 + v2x4) € Go () a.e. Hence, the values of Gy are decomposable.

Note that, from [HFj] for any ¢ € C,. we have:

d (0, Fy(t,v)) < H{0}, F(t,7(t)uo(v))
< H({0},F(t,0)) + H (F(t,0), F (t,7 (t) uo (¥)))
< k@) + k@) 17 () uo (V)lle,
< k@ + sup |7 ()uo (@) (O)]]
< K®L+ sup |(uo () (E+6)]]

s kORL+ sup |(wo @) (O]

then for a.e. t € J

d (0, Fy (t, %))

< k@®)[1+ a2 [1(uo () (Ol + = (w0 (¥)) (O]

< k() [+ 19l + (K@) 14 (0) ]

< k@) 1+ 1wl + M |¥(0)]]

< k@) +Q+ M)

< k(®)Bo(v). B3
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In order to apply Lemma (2.2.2), we define py : C, — L'(J,R=°) by po (v) (t) =

k(t) By (v)). We show that pq is continuous. Let ¢, 1, € C,.. One obtains

b
llpo (¥1) — po (l/“'2)||L1(.1_E) = /0 lpo (¥1) () — po (¥) ()| dt
b

= 4 || [|80(21) — Bo(to)|] dt

b
~ / E(E)] 11+ (1 4+ M) [[]] = (L 4+ (1 4+ M) [l )] dt
0

b
= 4 |k [(1+ M) |4y — i) dt,
which implies the continuity of pg.

Since C, = C([—7,0],R) is separable, then from Lemma (2.2.2) and equation
(3.3.2) Gy is l.s.c. Moreover, thanks to [HF;] and [HF5], for any ¢ € C, the set
S},(LT([)U‘) is nonempty and closed, and hence the values of Gy is nonempty and
closed.

Our aim is to show that the multivalued function H, satisfies the assumptions of
Lemma (2.2.4). So, we show that Hj (1)) is not empty for any ¢ € C... So, let ¢ € C.,

be a fixed element. Consider the multivalued function I? defined by:
I% () ={x € F§t,¢): |r—0| =d (0, F3(t,v))}

By Lemma (2.2.3) T’ 2, is measurable with nonempty values. Then, I'Y, has a measur-
able selection, i.e. there is a measurable function v : J — R such that v(t) € T'9 (¢, ),
for any ¢t € J and

[o(t)] = d(0, F (t,4)).

and consequently, by (3.3.2),
lv(t)| < k(t)Bo(v), a.e.

This shows that v € Hy (v).
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Therefore, from Lemma (2.2.4), Hy has a continuous selection fo : C,, — L'(J, R)
such that:

fo(¥) € Hy () , V¢ € C,.

Let us show that, for any ¥ € C,, the set
Lo(v) = {v € Go(¥) : |v(?)| < k(t)Bo(¥), a.e.},

is closed. Let (v,) be a sequence in Ly(v’) and v, — v in L!(J, E). Since Go(?)) is
closed, then v € Go(v’) . Moreover, v, — v in measure, hence there a subsequence

(vn,.) of (v,) such that v, — v almost everywhere. Note that
|{’nk(f-)| S ]':(t)vi:}()(.["‘v)‘ a.c.

This implies to |v(t)| < k(t)By(¢), a.e. Therefore, v € Lo(¢). This shows that Lo (v))
is closed. Then,

fo () () € Fg (t,9) = F (t,7 (t) uo (¥)) - (3.3.3)

and

[fo (¥) ()| < k(t)By (¥) , a.e. (3.3.4)
Now, let us define u, (¢) : C — G} as:

U(t), t € [-r0],

u () (1) = ,
Ki(t)y(0) + j;) (t —8)1 1 Ky(t — s8) fo () (s)ds, t € J.

In order to define f; : C, — L'(J,R), let

F]* : .] X C,. — ID(.A. (R) 5

Fi(ty) = F(t7()u ().
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Observe that, for any t € J :

H (FY (t,91), Fy (t,42)) = H(F (@t 7()us (1)), F (&7 () us (¢2)))

< k@) 7 (@) ua (¥y) — 7 () wa (¥y)lle,
< k() fil(iulT (t) ur (1) (0) — 7 (t) ur (v2) (0) |
< ki) = | (o gY@ +E) i) B4-8)]
< k‘(f)i;%_lgl&bl (1 (¥1)) (€) — (w1 (¥5)) (€) |
< l\'(f)[_rS;l(pSOI (u1 (¥1)) (€) — (w1 (¥2)) (Q) |
+()§21§)b| (w1 (¥1)) (€) — (u1 (¥2)) () ]
< k@llYr — 9ol + [ K1 (@) | |91 (0) — 9(0)]
+sup (¢ 8 K¢ = ) ful)() = falw)(o)lds
< E@IllYr — ¥all + My, (0) — 15(0)]

¢
s [ (€= W) — fola)(lds) (335)

' (q)o<c<o.

Note that for any s € J,

|fo(11)(s) — Jo(h2) (s)| < K(#)(Bo(v1) + Bo(¢2)),

and this means that fo(v),) — fo(v5) € L7 (J,R*). Hence, by the Holder inequality
and the continuity of fy, we conclude that F}* (¢,7) is continuous and consequently
l.s.c. for any t € J.

Now, we define two multivalued functions
G 30—V ard H; 3 G, —s 250
where

Gi(y) = {1Y € L'(J,E) : v(t) € F} (t,v), a.(a}.

H (@) = cd{veG, () :|v(t)— fo@) @) | < k(@)3,(¥), a.e},
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As above we can show that the values of GG} are closed and decomposable.

Note that from [HF;] for any ¢ € C, we get:

d (0, Fy (t,%)) < H{0},F(t,7(t)us (¥)))
< H{0},F(t,0) + H (F(t,0), F (t,7 (t) us (1))
< k() + k@) I (0w @),
< k(H)[1+ fi‘(}lolT(t) ur (¥) (0) ]
< KON+ sup | (@) (E+0)]
< (f)[1+;‘<1CP<b| u1 (¥)) (€) |]
< KON+ _sup [ (6) ]+ sup | (1)) (©)]
< KO+ 91+ 1K @] ¥ )]
#sup (¢ o) 16 = o)L fo () (5 s
< kO + 4]+ M (0) ]
+%%Q£Jf@—ﬂHUmeHM
< KO 191+ MY )
o / (¢ — )" k(s)Bo()ds]
< RO+ %] +M [ 0)]
\( 750w )oilégb/c (¢ — )" k(s)ds]. (3.3.6)

By Holder inequality, we have:

¢ ¢ - 1-0c
A (C—8)T " k(s)ds < (A (¢ —s)i= ds) &l 2 Lo

b1—¢

= ﬁ” ||/n(/re+)
]

Thus, the equation (3.3.6) becomes:

M bi°

40, Ff (1)) < HODL+ 91|+ M (0) |+ s mis 1Kl e Bo()]
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Let p; : C, — L'(J,R) defined by:

M b1°

pr () (1) = KO+ 11+ M1 )|+ prrr iz 1K 3 ey o))

By the same method used to prove that p, is continuous, we can show that p, is
continuous. Then from Lemma (2.2.2) GG is [.s.c. with nonempty closed values.
Now, let ¥» € C, be fixed. Let us show that H;(v’) is not empty. At first, note

that from (3.3.3), for any ¢ € J, we have:

d(fo(¥) (@), Fy (t,v)) < H(Fg(tv),Fy(t,9))

H (F (t,7(t)uo (), F (t,7 () w1 (¥)))

< k@) [T () uo (@) — 7 () us (V)|
< /s'(f)_sllglnlf () uo (¥) (0) — 7 (£) wr (¥) () |
£ A'(f)fsil(gOI(uﬂ( ) (t+0) — (w1 (¥)) (t+6) |
& Al(t)f?};,' (1o (¥)) (€) — (u1 (¥)) (€) |
< k@[ 2 (o ()) () = (wr (¥) (O

g:t}(llgl o ( ¥)) (€) — (w1 (¥)) (O]
< /«(t)[dsgcpml'v' Q) =¥ (Q)]

(%
HE | (¢ —8)"7 | K2 (¢ — 9)| [ fo () (s) |ds]
9
< "‘”%)(i‘éﬁb [ €= ks)atw)ds
M » —8) 1 k(5)ds

= A(t)lﬂ(l1)30(g)obgl<ug)bz (C—8)T k(s)ds,

By Holder inequality we get:

/'C(c )71 k(s)ds < (/‘kc >u1)l e
— 8 v(s)ds — S)l-o ds
JO o 0 L (]F )

W2

]’l o || ||er(.]\«’ "
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A(fo ) (). B (60)) < RO Fs g Ikl ey Bol®)
< k)3, (v), (3.3.7)
where f,(4) = AL 52 K] e, Bol®):

Secondly, let Fl be a multifunction defined by:

L) = {x € Fi(t,9) : & — fol@)(®)] = d(fo()(®), Fy (£.9))}-

Then by Lemma (2.2.3), I'}(¢) is a measurable and hence there is a measurable

function v : J — E such that v(t) € T}, (t), Vt € J. This implies to

[v(t) = fo(¥) () | = d(fo(¥)(2), FY (2, %))-

This equation with (3.3.7) give us:

lv(t) — fo() ()| < k(t)3, (), a.e.

and v € G (¢0) . Thus v € Hy (v).

From Lemma (2.2.4), H; has a continuous selection f; : C;, — L'(.J,R) such that:
fi(®) € Hy (¥),V¢ € C,.

By arguing as above, we can show that the closedness of G (¥’) implies that the
set
Li(y) ={v e Gi(¥) : [v(t) — fo(¥) (t) | < k(t)B:(¢), a.e.}.
is closed. Hence,
W) (1) € Fy (t.9) = F (8,7 (t)ur (&),
and

|f1 (4 —fo(¥) ()| < k(t)B1 (V) , a.e. (3.3.8)
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Suppose that we have constructed wug, 1,

oy Uny ooy fOo f1y oy [y --- satisfying (1)— (vi).
Let us define u,,,; : C, — Cj, as:

1 (t), te|[—r0],
Un+1 (l:‘:’) (f) ( ) ) [ ]

Ky (£)9(0) + [, (t

— )T Ky (t — 8) f (¥) (8)ds, t € J,
and hence define:

Fri1:IxC— Py (R), by:

F:H( ) =

F &7 ({1 (@),

1
Giy1 : Gy — 2V R

by
Gni1 (V) = {v € L'(J,E) : v(t) € F},, (t,9), ace.},
and
Hpyy : Cr — 2V UR) gy
Hpi1 () = cl{v € Gnya (¥) : |v(t) — fu () (1) | < k(2)Bn(¥), a.e.},
where 8, .,(¢) = 252

— T'(q)nl—° ||l‘|| (JR+) j) (L‘)nz()
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Let us show that for any t € J, t — F,;, (¢,%) is continuous. So, let v, ¢, € C,.

By [HF;], we have:

H (F:H (t, 1), F:H (, "/"2)) = H(F(t,7(t)uns1 (‘!"1)) o (T () Wi ("»‘:‘2)))

f) ”T(f “n+l(1/ 1)_T(f) “nrl 2)”(‘,

IA

< k(b ilgioh(t)u,,,l(uw)(ﬁ)—f(f)‘um (¥2) (0) |

< ku)jggwadwOHt+m—WMdeQMf+0H

< k(@) _jlgl&hl (unt1 (91)) (€) = (tns1 (¥2)) (€) |

< A‘(i)[j;l(pgol (Un+1 (¥1)) (€) — (Un+1 (¥2)) (€) |
+62220|(un+1(ua))(C)-(un*l(v&))(C)H

< k@®llvy — ¥all + 1K1 @)1l |91 (0) — %5(0)]
+sup [ (€= G~ n)6) — fulw) o)l

< k@)l — vall + M (0) — ¥,(0)]

-

/ "¢
J’SM)A<<—@qwﬁunur—ﬁua<wm

' () o<c<h.
Hence by the continuity of f,,, we infer that the multivalued function t — F_, (¢,1))
is continuous and therefore [.s.c.

Moreover, from [H,| for any ¢ € C, we get:

d(0,F; ., (t,v)) < H{0},F 7 (t)upi1 (¥)))

< H({0},F(t,0)+ H(F(t,0), F (7 (t) un+1 (¥)))
< k(@) + K@) 17 () unr (¥D)lle,

< k@)1+ fllélolT (t) uni1 (1) (6) []

o f)[1+_fl<1(}><0| Unt1 (¥)) (£ +6) |]

< k@[ + sup |(uns1(¥))(O)]]

—r<(<b
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then

d (0, Fr, (8,7))

< k@RA+ sup |(una (9)) () [+ sup | (unsa (#)) (C) ]
< k@1 + 14l + 1K @) 19 (0) |
¢
T / (€= 9)" " 1K2 (¢ = )| | £ () (5) |ds]
0<¢<bJo
< k@ + ¢l + My (0)]
M L T— ; q .
tra e, [ (€= 1£a () (5) b (3.3.9)

Further more, from property (v), for any ¢ € J, one obtains:

|f‘n (’) (f)| < |fﬂ (lii") (f) - fn—l ('l:""") (f)l T |fn—1 ('l/“"') (f) = fn—‘Z (‘,f‘") (f)| + ...
+|f1 (%) () — fo () ()| + | fo()(2)]
< KB () + k(OB 1 (8) + e+ k(B () + KO8,

Thus, the equation (3.3.9) becomes:

n

¢

d (0, F3yy (8,9)) < k@®)[1+]|9]|+M|y me sqp/ (¢ — )7 k(s)ds].
m 0 0=¢=<bJo

(3.3.10)

Note that, by Holder inequality, we have:

¢ ¢ l—o
- XL . | 3 e -’11:_:!' 3
A(q s)" M k(s)ds < (/ (&) 1) 1%l L3 sme)

br a

e L.

IA

Then, by (3.3.10):

’ , M b o
d(0,Fr ., (t,v¢) < k@)1 + ||v]+ My (0)]+ T(q) 7" &1l 2 L JRrH (Z_().»‘i,,(‘k"))]

< Par1()(t), (3.3.11)
where p,.; : C, — L'(J,R=%) and defined by:

Pai1 (¥) () = k(@)1 + [[¥]l + My (0) | +

n pa—o
Zgln(u) ,}] (7” ||L¢’(/IP’+]

m=0

M
I (q)
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Observe that for v, v, € C, we have:

[Pn+1 (1) — Pas (LJ‘J'Q)HL'(J.R) - [Pr1 (V1) (B) — Pata (¥2) () |di

b
- / K {I[9 — wall + M [y (0) = 6 0)
(Z 31:1 (4 1 ) <Z 3!1: L) )

Then from Lemma (2.2.2) and (3.3.11) G, is l.s.c. with nonempty closed values.

= e Il e e

This shows that p,,., is continuous.

Moreover, we can show as above that the values of GG, are decomposable.
In order to apply Lemma (2.2.4) we prove that the values of H,, ., are not empty.
So, let ¥ € C, be fixed.

For any t € J, by [HF;], one obtains:

(@) O, Fia (69) < H(FL(69), Fl (9)
H(F(t,17@)us (¥)),F (7 (1) unt1 (¥)))

< k@) |7 (@) un () — 7 (8) Ut (@)l

= b sup [ () s () () — T8 nes () @l
< A*(’),ﬂ‘(}lo”(“"(‘))( +0) — (uns1 (¥)) (¢ + 0)|
< Kk(t) sup |[|(un () (€) — (wnt1 (4)) (Ol -

—r<(<b
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Then,

d (fo (%) (t), Frps (£,9))

< KO sup i (9) (©) = (s (@) Q)
+ 50 [ (9)) (6) = (unsa (¥) ()]
< KOlY @ =& Ol + 1K@l 1¢ ©0) = ¢ (0)]
T 0(<C—s)‘“ 12 (€ = )l | fa () (5) = far () (5) |ds]
; ¢
. “’)r‘\({noi‘g‘-‘zh/o (€= )" 1 (@) (8) = fua (¥) (s) 1ds
3 ¢
< k@) \({1)0';1120/0 (¢ — 8)T k(s)B,(¥)ds

M ; ¢ q—1
< KOF o) sup [ (=5 k)ds,

I' () 0<¢<bJo

By Holder inequality we get:

¢ ¢ G i=o
[e=amneas < ([€=9%) 1L,
0 0

&
b1
< Ikl ey
!
Then
U T » M bi—°
d(fa (@) (t), Frpy () < li'(f)m»‘fr (Y )7]1_" 11,3 (s
< k@)Bna(¥), (3.3.12)
where 8, ,,(¢) = 2;) 2; ) ||A‘||L#(J,R+)‘d"('*”)'

Now. let I‘:ﬂ“ be a multivalued function defined on .J by:

IH () ={z € Fyu(t,¥) : le — fu(@)(®)| = d(fa(¥)(8), Fr i (t,9))}-

Since the values of F, |, are compact, then by Lemma (2.2.3) there is a measurable

function v : J — E such that v(t) € FZ_“ (t),vt e J
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Therefore, by (3.3.12)

() = fu(¥) ()| = d(fa(¥), Fria(t,9))

< k(t)Bn41(¥), ae.

Then v € Gpi1 (¥), |v(t) — fu(¥) (1) | < k(t)B,4+1(¥), a.e. and consequently v €
H11+l (U") .

From Lemma (2.2.4), H,,;, has a continuous selection f,,.; : C. — L*(J,R) such

that .fn +1 (L‘) = Hu +1 (L') .VL“‘ € (Yr

By arguing as above, we can show that the closedness of G, (7)) implies that

the set
Lrl‘l('d') = {"" € Gni1 (L) ) IU(t) — Jn (‘+) (t) | < A’(f)ﬂn(v")}

is closed. Then

frat1 (W) (£) € Frpy (%) = F (£, 7 (£) tns1 (@),

and
| fas1 () (B) — fa (@) () | < k(t)Bns1 (¥) - (3.3.13)
Therefore, the functions wug, wy, .... %, ..., fo, f1s--es fn 5 ....are constructed and satis-

fying the properties (i)—(vi).
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Now, from the property (v), for all ¢ € J and for all ©» € C, we have:

[foir () () — fu (@) () | < k() Bpy1 ()

M pr—°
= (f)m",—_”||/*||L%(”ﬁ)f‘gu(ﬁ')
M b7 .

= k(t)

F (q) ]’1—_” “AH ],%(['er) ;‘.'))”71 (()

M b W
= k0) | e Wl umn)  Ao(#)

M bi—° e ,
= k(t) [ Mo ||L-||L%(,,‘:pm] A+M+D |2l -

I'(q)n'—°
(3.3.14)
Then
| fasr () (8) = fo (@) Ol 2py < k@) (1+ (M + 1) [|9]]) 6™, (3.3.15)
where

M br-°

0= I' (g) it~ ”k”LWI(J-JR') '

This implies that for any v» € C,, any two natural number n, m with n < m and any

teJ

1S ) = Fa@llzrgmy < () = fuaa@)lzsagy + e + a1 (8) = fa @)l amy
< ||kl [0™ + A I + (5”’1](1 + (M +1)||9])
< kllprrn T L4+ 6+ 8 + .. + 8™V + (M + 1) [|9]])
< Kl arn ™D (1 + (M +1) |lvl)

k=0
1

||kl L1 gy 0"
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s g = dmoe fuy

It

Since 0 < § < 1, then:
j‘”((l,‘fl‘)HLl(.].R) = 0_

lim ”fm('l:‘:") -

m,n—oc

This implies that for any ¥ € C,., the sequence (f,(v)) is Cauchy in L' (J, E). So,

there exists a function f : C, — L' (J,R) such that:

lim .fn W) =r), WwedC,.

n—oo
To prove that f : C, — L' (J,R) is continuous, let ¢,, ¥, € C, and € > 0, since

fo(¥) — f(¥,) and f, (v;) — f(¥,), there is a natural number N = N (¥,,%,)

such that for n > N we have:
Ifn (1) = £ @) llaumy < 3 (3.3.17)
and
| fo (¥2) — F ("/""2)||L1(.1.R) = 3 (3.3.18)
By the continuity of fy, there is § > 0 such that:
: (3.3.19)

€

Wl m

%1 — Yol <8 = ||fv (¥1) — v W)l 2wy <

Then from (3.3.17), (3.3.18), (3.3.19) we have:
I (&) — Fn (Wl paamy + v (¥01) — Fv ()l 2y

If (1) — F W)l prgmy <
+ I fv (o) — f ("f~'2)”/,1(.l.l~;)
o B BB
- 3 ¥ 3 T 3

This means that f : C, — L' (J,R) is continuous.
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Now, let ¢ € C, be fixed. From the definition of u, (1)) and (3.3.15) we get:

[ttnia () = un (V)llg, < sup |tnis (¥) (8) — un () () | + SUP [tnia () () — un (¥) (#) |

—r<t<0 0<t<b
¢
< sup [ (=)™ K (¢ = ) 1o (9 () — fos () (5 s
o<t<b.Jo
< & sup /' (t — 8)T | fu (@) (8) — fu1 () (5) |ds
= F(q)ogfsh A n n— /
& M 0"(1+ (M + 1) ||¢||) sup /.t (t — 8)7 k(s)ds
— I'(g) "~ o<t<b Jo
< M oar e Z k)L (3.3.20)
S ni-o L7 (JR+)

I'(q)
By arguing as in (3.3.16) we can show that w, (1) is a Cauchy sequence in C},. Hence
there is u(1) € Cy such that u, (1) converges to u(1)) in Cj.

et us define u : C, — ()} such that
Let lefi C C h that

B Bl

To prove that v : C,. — C} is continuous, we take 1,1, € C,. Then for any

n > 1 we have:

[ (¥1) —w(@2)llg, < llu (1) — un (1) llg, Hllun (V1) — un (P2)ll g+l (¥2) — u (), -

It follows from the continuity of u, (¢) and from the fact that u,(v¢’) converges to
u(v) in C), that u is continuous.

Next, we prove that

f@W) @) e Ft,7({t)u()),ae.
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So, ¥ € C,. We have by [Hy]:

A ) (0), F (1,7 0 u (@) < H(F (6,7 (6w (8)), F (6,7 (6)u (1))
< k() Ir (0w () = 7 (O u @),
< k@) sup |7 () un () (6) = 7 () u (¥) 0)|
< k() sup |(un (9) (t+6) = () (t+6)
< k(1) f‘;&' (un (¥)) () = (u(¥)) () |
< ) fun(®) — u(@)lg, ace.

Since f, (1) converges to f(v’) in L'(J,R), then f,(¢’) converges in measure to

f(0) and hence we can find a subsequence f,, (v’) of f,(v’) such that
Fun () = F(8), ae.
So, the last inequality with (3.3.20) gives us:
f@W) @) e Fit,7(t)u(v)), ae. (3.3.21)
Now, let v : C, — C), defined by:

C P(t), te[-r0],
0 () (1) = f
K1(t)y(0) + fu (t—8)7 1Ky (t — s)f (¥) (s)ds, teJ

Let us show that
u(y)(t) =v)(t), Yy € Cr and t € J.

Let v € C,. Note that for almost t € .J,

[fa()()] < H{O}, F(¢, 7(t)un(v))
< H{0},F(t,0)) + H(F(t,0), F(t,7(t)ua(¥)))
< k() + k@) I un(@)lle,
< k() + k(@) lun ()l -
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Since u, (1) converges uniformly to u(v)) in Cj, then wu, (1)) is uniformly bounded,

hence we can find an integrable function z, : J — [0, oc) such that
£ (@) (@) < 2y(2), a-e.
Moreover, as above, there is a subsequence ( f,,(¢)) of f,(1) such that
f (@) = F(¥), ae.
Then, by the Lebesgue dominated convergence theorem we get for t € J,

lm w,, (¥)(t) = v()(t).

ng—00

Then
v(¥)(t) = u(y¥)(t), YVt € J and ¢ € C,.
Thus:
w (W) (t) = (1), t e [—'I'. 0] ;
K (t)$(0) + [ (t — )T 1Ko (t — s)f (¥) (s)ds, te€J,
and

u(y) €S W),V e C,.

This means that u : C,, — C}, is a continuous selection for S, and this complete the

proof. m
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